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Abstract. In this paper we investigate the Hamilton-Jacobi-Bellman (HJB) approach for solving
a complex real-world optimal control problem in high dimension. We consider the climbing problem
for the European launcher Ariane V: The launcher has to reach the Geostationary Transfer Orbit
with minimal propellant consumption under state/control constraints. In order to circumvent the
well-known curse of dimensionality, we reduce the number of variables in the model exploiting the
specific features concerning the dynamics of the mass. This generates a non–standard optimal control
problem formulation. We show that the joint employment of the most advanced mathematical
techniques for the numerical solution of HJB equations allows one to achieve practicable results in
reasonable time.
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1. Introduction. In this paper we investigate the Hamilton-Jacobi-Bellman
(HJB) approach for solving a complex real-world optimal control problem in high
dimension. We aim at showing that the joint employment of the most advanced
mathematical techniques for the numerical solution of HJB equations allows one to
achieve practicable results in reasonable time.

The HJB approach is based on the Dynamic Programming Principle (DPP) and
it can be used to solve fully nonlinear control problems and minimum time problems,
taking into account mixed state/control constraints [2]. Once the HJB equation is
solved, it is possible to recover the optimal control in feedback form starting form
any initial condition of the state of the system. Moreover, any knowledge of the
solution is needed in advance (presence of singular arcs, number of commutations
and so on) and the reconstructed optimal control is the global minimum of the cost
functional associated to the problem. All these features make this approach preferable
to other more common techniques as direct methods or Pontryagin-based optimization
algorithms such as shooting methods [3]. On the other hand, the HJB appraoch suffers
from the so-called curse of dimensionality, meaning that the CPU time needed to
compute a numerical solution of the HJB equation grows exponentially with respect
to the state dimension, and it is currently prohibitive if the dimension is > 4. This is
the main reason which makes the HJB approach an impracticable choice by engineers
[10].
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In this paper we combine several recent techniques for the HJB approach, thus
obtaining relatively accurate solutions to a fully nonlinear control problem in reason-
able time without parallel computation. More precisely, we investigate the potential
of the HJB approach for the climbing problem in the case of the European launcher
Ariane V developed by the French space agency “Centre National d’Études Spatiales”
(CNES). For a given payload (fixed final mass), we aim at steering the launcher to the
Geostationary Transfer Orbit (GTO) with minimal propellant consumption under a
dynamic pressure constraint [8, 11]. In this study, since the engine is always at full
thrust, minimizing the propellent consumption corresponds to reach the GTO orbit
in minimal time.

2. The climbing problem for multi-stage launchers. The launcher Ariane
V is equipped with 2 boosters, 1 main stage and 1 secondary stage. These reservoirs
are initially filled with propellant and are progressively released during flight. The
flight is divided in four phases, summarized in the following table.

phase thrust notes

0 boosters and main stage dynamics not controlled
1 boosters and main stage lasts until booster separation
2 main stage lasts until main stage separation
3 secondary stage lasts until secondary stage separation

The complete dynamics can be described by 6 variables, in addition to time, launcher’s
mass (not constant), and control variable. See [11] and references therein for details.
Under the assumptions that the plane of motion is in the equatorial plane and the
drag and thrust forces are contained in this plane, the launcher’s dynamics can be
simplified as






ṙ = v cos γ

v̇ = − µ
r2

cos γ − FD(r,v,α)
m(t) + FT (r)

m(t) cosα+Ω2r cos γ

γ̇ = sin γ
(

µ
r2v

− v
r

)
− FT (r)

v m(t) sinα− Ω2 r
v
sin γ − 2Ω

(2.1)

where r is the altitude, v is the modulus of the velocity, γ is the path inclination, α
(control variable) is the angle of attack, m is the mass, µ is the Earth’s gravitational
constant, FD is the drag force, FT is the thrust force and Ω is the Earth’s angular
velocity. We also take into account a mixed state/control constraint of the form
Q(r, v)|α| ≤ Cs, where Cs is a constant and Q is the dynamic pressure. The dynamic
pressure takes large values into the atmosphere, and this forces the angle of attack to
be very small.

The mass m = m(t) varies during the flight. It is given by the sum of three
quantities: payload’s mass MPL, launcher’s mass ML and propellant’s mass MP . MP

decreases continuously as the fuel is consumed, the rate of consumption depends on
the phase and it is constant in each phase. At time t = 0 the launcher’s mass ML is
given by the sum of the 2 stages and the boosters and then drops abruptly at the end
of each phase, since reservoirs are progressively released.

Let us remark that while (ṙ, v̇, γ̇) depend on m, ṁ does not depend on the other
variables and on the control variable. This important property allows us not to include
the mass in the state variables of the HJB equation. Indeed, assuming the final time
tf of the trajectory is known, the mass function m(t) can be computed by means of
a simple backward integration with the “initial” condition m(tf ) = MPL.
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Let us define a new function m̃ as the function such that m̃(tf − t) = m(t) for
any t ∈ [0, tf ]. We can re-write the dynamics of the system as follows





ṙ = v cos γ

v̇ = − µ
r2

cos γ − FD(r,v,α)
m̃(tf−t) + FT (r)

m̃(tf−t) cosα+Ω2r cos γ

γ̇ = sin γ
(

µ
r2v

− v
r

)
− FT (r)

v m̃(tf−t) sinα− Ω2 r
v
sin γ − 2Ω.

(2.2)

In this equivalent formulation, the mass does not appear as a state variable but it
is explicitly given as a function of the final time. Because of the one-to-one relation
between the time t and the mass m(t), minimizing the propellant consumption is
equivalent to minimizing the time tf used to reach the target.

We therefore consider a minimum time problem of the form

(P)





T (x) := minimize tf ,

with

{
ẏ(t) = f(tf − t, y(t), α(t)) , t ∈ [0, tf ],
y(0) = x,

tf ≥ 0, α(t) ∈ A for a.e. t ∈ [0, tf ],

y(tf ) ∈ C, Ψ(y(t), α(t)) ≤ 0 for a.e. t ∈ [0, tf ],
g(y(t)) ≤ 0 for all t ∈ [0, tf ],

where y = (r, v, γ) is the state of the system, its initial condition x belongs to R
d

(with d = 3), A ⊂ R
m (with m = 1) is the set of admissible control values (here

A = [αmin, αmax] ≡ [−30◦, 60◦]), f : R+ × R
d × A → R

d is the dynamics of the
system as it appears in (2.2), C ⊂ R

d is the target set to be reached in minimal
time, and Ψ : R

d × A → R is the mixed state/control constraint function (here
Ψ(x, α) := Q(r, v)|α| − Cs with Q(r, v) > 0 for all (r, v)). Furthermore we introduce
a state constraint in the form g(y(t)) ≤ 0 (for some Lipschitz continuous function
g : Rd → R) in order to add additional constraints on the admissible set of trajectories.
This will be also useful for numerical purposes.

The function T represents the minimal time needed to reach the target starting
from any x ∈ R

d with an admissible trajectory obeying the state/control constraints.
Since the final time tf appears in the dynamics, the above setting of the control
problem is not standard.

Time optimal control problems for time-independent dynamics have been studied
in several papers. It is known that in this context the minimum time function satisfies
the DPP and is characterized as the solution of a steady HJB equation [2]. Bokanowski
et al. proved in [4] that the minimum time function associated to the time-dependent
dynamics does not satisfy the DPP and cannot be characterized by means of a HJB
equation. However, following [6], the function T is related to the determination of
the “backward reachable sets” of the control system. More precisely, we define a
reachability function ϑ(t, x) which is ≤ 0 if there exist an admissible trajectory y(t)
starting from x and reaching the target C before time t:

ϑ(t, x) := min
α

ϕ(yαx (t))
∨

max
θ∈[0,t]

g(yαx (θ)),

where y = yαx denotes the solution of ẏ(s) = f(y(s), α(s)) on [0, t] with y(0) = x,
ϕ is a function s.t. ϕ(x) = 1 if x ∈ C and ϕ(x) = 0 elsewhere, and the controls
α : (0, tf ) → [αmin, αmax] are subject to the constraint Ψ(yαx (t), α(t)) ≤ 0. Then,
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following [6], one can verify that

T (x) = min{t ≥ 0, ϑ(t, x) ≤ 0}.(2.3)

It can be proven under classical assumptions that ϑ is the unique lower semi-
continuous solution (in the viscosity sense) of the HJB equation





min

(
∂
∂t
ϑ(t, x) + max

α∈A,Ψ(x,α)≤0
(−f(t, x, α) · ∇ϑ(t, x)), ϑ(t, x)− g(x)

)
= 0

ϑ(0, x) = ϕ(x)
(2.4)

where t > 0, x ∈ R
d, and ∇ denotes the gradient with respect to the x variable only.

Let us recall that the time t appearing in the solution ϑ(t, x) of the HJB equation
(2.4) flows in the reversed direction with respect to the physical time. Indeed, the
reachable sets Ωt := {x : ϑ(t, x) ≤ 0} evolve from the target to the rest of the space,
following the characteristics lines of the HJB equation, see [5] for details. Then, the
function m̃(·) (reversed evolution of the mass) can be computed together with ϑ(·, x).
In practical computation, at each time step k∆t, k = 0, 1, . . ., we compute the mass
m̃(k∆t) and then we evaluate the dynamics (2.2).

Meanwhile the function ϑ is computed, we obtain the minimum time function T
using (2.3). Afterwards, the minimal time function is used to recover the optimal
control and optimal trajectories from any point of the state space. Since m̃ depends
only on time, and T is the minimal time needed to reach the target, it results that
the minimal mass needed to reach the target from (r, v, γ) is given by M∗

0 (r, v, γ) :=
m̃(T (r, v, γ)). In other words, the HJB approach is able to compute the minimal
propellant mass needed to reach the target with a given payload, rather than to
compute the maximal payload which can be carried on the target starting with a
given propellant mass.

It is interesting to note the consequences of such a treatment of the mass variable.
The optimal control reconstructed by means of the value function T will be in feedback
form with respect to the state variables (r, v, γ) only, while it will be open-loop with
respect to the mass m.

3. Numerical results. To solve the HJB equation (2.4) we use the combination
of two techniques. The first one is the discretization of the equation by the Ultra Bee
scheme (a finite difference type scheme), which has the nice property of computing
the reachable sets with good accuracy without numerical diffusion (see e.g. [7]). The
second one is an efficient data structure used to store and evaluate the function ϑ. At
any time step, the function θ is actually computed only in a small region of the domain
(narrow band). This region acts as an interface which separates the computed zone
from the not-yet-computed zone, and it is updated at each time step [1]. Computation
stops when the whole domain was covered by this moving interface. The sparse semi-

dynamic data structure proposed in [5] allows us to store and retrieve efficiently the
values of the nodes in the narrow band, speeding up the computation. The CPU time
needed to compute the solution of the three-dimensional climbing problem is then
comparable to that of a two-dimensional problem.

Furthermore, physical considerations allow us to restrict the computational do-
main, avoiding state regions never covered by the launcher (for example where both
r is very small and v is very large). We first define the domain

U := [rT + 450m, rT + 450× 103m]× [60ms−1, 10500ms−1]× [0, 90 deg],
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where rT = 6378× 103m is the Earth’s mean radius. Then, we restrict the compu-
tation on the subdomain K of points (r, v, γ) ∈ U such that ℓmin(r) < v < ℓmax(r),
with

ℓmin(r) := max (max((r − b1)/a1, (r − b2)/a2),min(500, (r − b3)/a3)) ,

ℓmax(r) := (r − b4)/a4,

and

a1 = 33.330, b1 = 6544700; a2 = 95.000, b2 = 6388000;
a3 = 52.000, b3 = 6379000; a4 = 14.285, b4 = 6370900.

This domain restriction allows us also to get a more favourable CFL condition when
solving the HJB equation. In our case the CFL condition has the form

max

(
∆t

∆r
‖fr‖L∞(K),

∆t

∆v
‖fv‖L∞(K),

∆t

∆γ
‖fγ‖L∞(K)

)
≤ 1

where f = (fr, fv, fγ) are the components of the dynamics given in (2.2) (see [5]).
The target C is assumed to be the GTO orbit. This orbit can be characterized by

a set of two equations in variables (r, v, γ), hence it is a one-dimensional curve that
can be numerically evaluated.

Once the function T is computed, we reconstruct the optimal feedback control
law α∗(r, v, γ) using standard techniques described, for example, in [2](Appendix A).
Then, we computed the optimal trajectory solving the system (2.1) by a 4th-order
Runge-Kutta scheme. We will compare our results to a reference trajectory, which
is a numerical solution obtained by the CNES by using a shooting method on the
complete (6+1)-dimensional model.

The payload (initial condition for the time-reversed mass) is chosen as

MPL = 15.37× 103 kg.

We denote by Nr, Nv and Nγ the number of nodes in the r-axis, v-axis, and
γ-axis, respectively, and by Nα the number of nodes used to discretize A.

Example 1. We approximate the optimal trajectory from the point x0 := (r0, v0, γ0)
= (rT +10.03 km, 476.00 ms−1, 36.67 deg), which belongs to the reference trajectory
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Fig. 3.1. (Example 1) Left: optimal trajectory in the space (r, v, γ) (compared with the reference
trajectory plotted in dotted line), and reachable set corresponding to T (r0, v0, γ0). Right: r(t), v(t),
γ(t) and m(t) along the optimal trajectory.
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Fig. 3.2. (Example 1) Trajectory starting with the initial mass M0,ref = 553.87 × 103 kg
computed employing the optimal control α∗(r, v, γ).

provided by the CNES. We solve (2.4) on a grid with Nr = 100, Nv = 100, Nγ = 50,
and Nα = 30. In Fig. 3.1, we have plotted the numerical solution obtained by the HJB
approach, compared with the reference trajectory. We obtain the best point of the
orbit to be reached with an optimal time tf = T (x0) = 1167.1 s, (reference trajectories
gives 1178.45 s) and an optimal initial mass M∗

0 = 505.01 × 103 kg. The optimal
trajectory gives a final mass of 13.74× 103 kg, slightly below MPL (the difference is
due to the numerical errors and depends on the fact that the optimal control is not
in feedback form with respect to the mass variable). The CPU time needed for the
computation of the value function and the optimal trajectory was 253 s.

We also tried to use the optimal control law obtained by the HJB approach to
reconstruct a trajectory with the initial mass M0,ref = 553.87× 103 kg, which is the
mass provided by the CNES at x0. We observe that this trajectory (Fig. 3.2) reaches
the GTO target with a final mass of 15.89× 103 kg, slightly above MPL.

Example 2. Here we consider the optimal trajectory starting from the initial point
x0 := (r0, v0, γ0) = (rT +501.69m, 76.20ms−1, 4.47 deg). This point is taken from the
reference trajectory and corresponds to the position of the launcher at the beginning of
phase 1. In this case we are faced to an important numerical issue. The computation
of the reachable set is very slow in the region close to the curve (r, v) = (0, 0), due
to a restrictive CFL condition. To fix this, we use new variables (r, v, γ) → (r′, v′, γ),
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Fig. 3.3. Mesh points in the (r, v) plane after the change of variable (3.1)
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defined implicitly by

r := Kr(e
r′ − 1) + rT , v := Kv(e

v′

− 1) + vT ,(3.1)

with Kr = 1.5× 103m, Kv = 1165.6ms−1, and vT = 10ms−1, see Fig. 3.3. After this
simple change of variables, we solve the HJB equation on a regular grid as before, in
variables (r′, v′, γ).

Using a mesh size Nr = 200, Nv = 200, Nγ = 75, we obtain the optimal initial
mass M∗

0 = 649.77×103 kg, corresponding to the optimal time tf = T (x0) = 1200.6 s.
The optimal trajectory gives a final mass of 13.27× 103 kg. Results are shown in Fig.
3.4. CPU time was 57 min.
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Fig. 3.4. (Example 2) Left: optimal trajectory in the space (r, v, γ) (compared with the reference
trajectory plotted in dotted line), and the reachable set corresponding to T (r0, v0, γ0). Right: r(t),
v(t), γ(t) and m(t) along the optimal trajectory.

We also tried using the optimal control law obtained by the HJB method to
compute a trajectory with the reference mass M0,ref = 736.39× 103 kg, which is the
mass of the launcher at x0 as provided by the CNES. This trajectory reaches the
GTO with a final mass of 16.07× 103 kg, slightly above MPL. Results are shown in
Fig. 3.5.
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Fig. 3.5. (Example 2) Trajectory starting with the initial mass M0,ref = 736.39 × 103 kg
computed employing the optimal control α∗(r, v, γ).

4. Conclusions. In this work we have studied the applicability of the HJB ap-
proach to a real-world climbing problem. In terms of accuracy, this approach is not
yet competitive with the currently used methods. However, without requiring any a
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priori knowledge on the structure of the optimal trajectories, it can provide a qual-
itative global view of the backward reachable sets and give an approximation of an
optimal feedback control and optimal trajectory. This information can be also used as
initial guess for a more precise method (like, e.g., the shooting method), as proposed
in [9]. Numerical results also suggest that the currently used launcher’s trajectory
could be actually improved. Indeed, tests have shown that given the payload MPL,
the launcher can reach the target starting with a lower amount of propellant. Alter-
natively, given the initial mass of propellant currently used, it is possible to reach the
target with a heavier payload.

Further ongoing work concerns the study of the HJB approach including a ballistic
phase, in order to reach the Geostationary orbit (GEO).
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