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Abstract. The Shape-from-Shading problem is a classical problem in
image processing. Despite the huge amount of articles that deal with
it, few real applications have been developed because the usual assump-
tions considered in the theory are too restrictive. Only recently two new
PDE models have been proposed in order to include in the model the
perspective deformation of the image, this allows to drop the unrealistic
assumption requiring that the point of view is very far from the object.
We compare these two models and present two semi-Lagrangian approxi-
mation schemes which can be applied to compute the solution. Moreover,
we analyze the effect of various boundary conditions on the first order
equations corresponding to the models. Some test problems on real and
virtual images are presented.

1 Introduction

The Shape-from-Shading problem is a classical inverse problem in image process-
ing. The goal is to reconstruct a three-dimensional object (the shape) from the
brightness variation (the shading) in a greylevel photograph of that scene. In
the classical model it is assumed that the surface z = u(x), x ∈ Ω ⊂ R

2 is a
graph. In order to characterize the solution of the problem several assumptions
are needed, here are the most classical ones (see e.g. [3]):

H1 - The image reflects the light uniformly, i.e. the albedo (ratio between energy
reflected and energy captured) is constant.
H2 - The material is Lambertian, i.e. the brightness function I(x) is proportional
to the scalar product η(x) · ω(x) where η(x) is the normal to the surface at the
point (x, z(x)) and ω(x) is the direction of the light at the same point.
H3 - The light source is unique and the rays of light which lighten the scene are
parallel, i.e. ω(x) is constant.
H4 - Multiple reflections are negligible.
H5 - The aberrations of the objective are negligible.
H6 - The distance between the scene and the objective is much larger than that
between the objective and the CCD sensor.
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H7 - The perspective deformations are negligible.
H8 - The scene is completely visible by the camera, i.e. there are not hidden
regions.

Under those assumptions, if the light source is vertical the solution can be
characterized in terms of an eikonal type equation

|∇u(x)| = q(x) for x ∈ Ω where q(x) =

√
1 − I2(x)

I2(x)
. (1)

Since the object can (obviously) have sharp sides there is no reason to assume
that the solution of (1) is regular, the natural framework for this characterization
is that of weak solutions in the viscosity sense (see e.g. [14,9]). However, the
problem is not well-posed and suffers from the convex-concave ambiguity which
makes impossible to prove uniqueness results without additional assumptions
on the surface. A lot of work has been done to obtain uniqueness results in the
framework of weak solution and new concepts have been introduced, such as that
of maximal solutions (see [2] and references therein, [1,15] for some numerical
applications and [8] for an up-to-date survay).

Recently, more realistic models have been proposed (see Prados and Faugeras
[12], Tankus, Sochen and Yeshurun [16], Courteille, Crouzil, Durou and Gurdjos
[4]). Since those papers, the Shape-from-Shading was finally applied to some real
problems like reconstruction of faces ([11,13]), reconstruction of human organs
([17]) and the digitization of documents without scanners ([5,6,3]). We will ex-
amine in particular two models. The first, proposed in [4], drops the assumption
H7 so that it takes into account the perspective deformation due to the finite
distance between the camera and the scene. In this model the distance of the
light source is infinite so that all the rays are parallel (in the sequel this model
will be denoted by PSFS∞). We perform a numerical approximation of the first
order PDE related to the new problem via a semi-Lagrangian discretization and
we discuss the effect of several possible boundary conditions for it.

In the second model, proposed by Prados and Faugeras [12], the assumptions
H3 and H7 are dropped. The light source is placed at the optical center as in [10]
so that this model is more realistic under flash lighting conditions (in the sequel
this model will be denoted by PSFSr). We present a semi-Lagrangian scheme
also for this model.

The goal of this paper is to compare the two models and test them on real
and synthetic images trying to sketch some conclusions which can be useful for
future applications.

2 The PSFS∞ Problem

In this section we get rid of assumption H7 so we will take into account the
perspective deformation due to the fact that the camera is close to the scene.

Let us define the model adopting the same notations used in [5]. The point
O = (X0, Y0) is the principal point of the image, i.e. it is the intersection between
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Fig. 1. The PSFS∞ model

the perspective plane Π and the z axis, d and d′ are respectively the distance of
the objective from the perspective plane (the CCD sensor) and the distance of
the objective from the (flat) background, l and l′ = d′

d l are respectively the length
of a generic segment in the perspective plane and the length of the real segment
corresponding to it (see Figure 1 and [5] for more details). The representation
of a point P on the surface in terms of the (X, Y ) coordinates of a point in the
perspective plane Π is given by three parametric equations

x = r(X, Y ), y = s(X, Y ), z = t(X, Y ) (2)

where (see [5]) {
r(X, Y ) = X−X0

d t(X, Y )
s(X, Y ) = Y −Y0

d t(X, Y ).
(3)

Then the problem amounts to compute the third component t. This is the most
difficult task since t is the solution of the following eikonal type equation

(
d

t(X, Y )

)2

|∇t(X, Y )|2 =
I2
max

I ′(X, Y )2
− 1 in Ω (4)

where Ω is the internal region bounded by the silhouette of the object (∂Ω will
denote its boundary) which is embedded in a rectangular domain Q,

t(X, Y ) = t(X, Y ) + (X − X0, Y − Y0) · ∇t(X, Y ), (5)

I ′(X, Y ) =
I(X, Y )

(
(X − X0)2 + (Y − Y0)2 + d2

)2

d4 , (6)

and Imax is a constant depending on parameters of the problem. The set Q \ Ω
is the background.

Defining

f(X, Y ) :=
1
d2

(
I2
max

I ′(X, Y )2
− 1

)
(7)
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we can write (4) as

|∇t(X, Y )| =
√

f(X, Y )
∣∣t̄(X, Y )

∣∣. (8)

We want to write (8) in a fixed point form and construct an approximation
scheme for this equation. To this end it is important to note that t̄ has a sign.
In fact, the exterior normal to the original surface at the point P is given by
n̂(P ) = N(P )/|N(P )| where

N(P ) := (d tX(X, Y ), d tY (X, Y ), −t̄(X, Y )) (9)

and since −t̄ must be positive (according to the orientation of the z axis in
Figure 1), t̄ must be negative. This implies that (8) is in fact

|∇t(X, Y )| +
√

f(X, Y )
(
(t(X, Y ) + (X − X0, Y − Y0) · ∇t(X, Y )

)
= 0. (10)

Equation (10) must be complemented with some boundary conditions, typically
we will consider the Dirichlet boundary condition

t = g(X, Y ) on ∂Ω, where − d′ ≤ g ≤ 0. (11)

We will come back later on to this point.
The standard semi-Lagrangian scheme for (10)-(11) is

t(X, Y ) = F [t](X, Y ) :=
1

1 + h
inf

a∈B(0,1)
{t (bh(X, Y, a))} in Ω (12)

where

bh(X, Y, a) = (X, Y ) + h

(
−a√

f
− (X, Y )

)
(X, Y ) ∈ Ω, a ∈ B(0, 1) (13)

and B(0, 1) is the unit ball in R
2. Let us examine the properties of the F operator

in order to guarantee convergence for the fixed point iteration. First, let us
introduce the space W = {w : Ω → R, such that w|∂Ω = g}.

Lemma 1. [7] Under the above assumptions, the following properties hold true:
a) F is a contraction mapping in L∞(Ω);
b) F is monotone, i.e. s ≤ t implies F [s] ≤ F [t];
c) Let V = {w ∈ W : −d′ ≤ w(X, Y ) ≤ 0}, then F : V → V ;

In practice, a variable step discretization h can be applied to obtain more accu-
rate results depending on X, Y and a in such a way that

h(X, Y, a)
(

−a√
f

− (X, Y )
)

= Δx for all X, Y, a

where Δx is the space step discretization. Note that h should be interpreted as a
time step used to integrate along characteristics in the semi-Lagrangian scheme.
This trick reduces the number of iterations needed to reach convergence.
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Now let us examine the algorithm. Lemma 1 guarantees that, starting from
any initial guess t(0) which satisfies the boundary conditions, the fixed point
iteration

t(n+1) = F [t(n)] (14)

converges to the unique solution t∗ (fixed point). The iterative algorithm stops
when ‖t(n+1) − t(n)‖∞ < ε, where ε is a given tolerance.

We note that a direct consequence of the above Lemma is that one can obtain a
monotone increasing convergence just starting from any function below the final
solution, e.g. choosing t(0) ≡ −d′ in the internal nodes and imposing the Dirichlet
boundary condition t(0) = g(X, Y ) on ∂Ω. Moreover, property b) guarantees that
t̄ < 0 for all (X, Y ) ∈ Ω at every iteration, so the equation associated to the
problem is always (10).

3 The PSFSr Model

This model gets rid of assumptions H7 and H3. It takes into account the per-
spective deformation and the closeness of the light source which is now located
at the optical center.

Let us define the model adopting the same notations used in [13]. Let Ω be
an open set of R

2. Ω represents the image domain. We denote by f > 0 the
focal length and by P a generic point on the surface. There exists a function
u : Ω → R such that (see Fig. 2)

P = P (x, y) = u(x, y)m′ (15)

where
m′ =

f√
x2 + y2 + f2

m and m = (x, y, −f). (16)

We also denote by r(x, y) the distance between the light source and the point
P (x, y) on the surface. Note that u(x, y) = r(x,y)

f .
In [13] it was proved that v = ln(u) (u is strictly positive since we assume that

the scene is placed in front of the optical center) is the solution of the following
equation

− e−2v(x,y) + sup
a∈B(0,1)

{−b(x, y, a) · ∇v(x, y) − l(x, y, a)} = 0 , (x, y) ∈ Ω (17)

once we define

l(x, y, a) :=−I(x, y)f2
√

1 − |a|2 , b(x, y, a) :=−J(x, y)RT (x, y)D(x, y)R(x, y) a ,

D(x, y) :=
(

f 0
0

√
f2 + x2 + y2

)
, R(x, y) :=

1
(x2 + y2)1/2

(
y −x
x y

)
,

J(x, y) := I(x, y)f
√

x2 + y2 + f2

where RT is the transpose of the matrix R. Note that l(x, y, a) = 0 on ∂B(0, 1),
therefore in the numerical approximation we can not search only on ∂B(0, 1)
but we have to discretize the unit ball entirely. We have the following
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Fig. 2. The PSFSr model

Theorem 1. Let Ω be bounded and smooth. If I is differentiable and if there
exist δ > 0 and M verifying I ≥ δ and |∇I| ≤ M , then equation (17) comple-
mented with Dirichlet boundary condition u = φ on ∂Ω has a unique viscosity
solution.

Theorem 2. Under the assumptions of Theorem 1, equation (17) complemented
with state constraints boundary condition on ∂Ω has a unique viscosity solution.

The proof of Theorems 1-2 can be found in [13]. These uniqueness results show
that, under certain assumptions, the PSFSr model is well-posed. As we will
see in the numerical experiments, the application of state constraint boundary
condition (which is more convenient than Dirichlet’s or Neumann’s since it does
not require a previous knowledge of any data) is typical of the PSFSr model due
to its particular brightness attenuation and cannot be exported to the PSFS∞
model.

We present a semi-Lagrangian discretization for equation (17) which is simpler
than that presented in [13] and which has a built-in up-wind correction. By
standard arguments, we get, for (x, y) ∈ Ω,

− vh(x, y) + inf
a∈B(0,1)

{vh((x, y) + hb(x, y, a)) + hl(x, y, a)} + he−2vh(x,y) = 0.

(18)
We want to solve equation (18) following a fixed point method. Note that once
we compute the control a∗ where the infimum is attained we need some extra
work to compute vh(x, y). In fact, let us define

c := vh((x, y) + hb(x, y, a∗)) + hl(x, y, a∗)

and t := vh(x, y) for any (x, y) fixed. At every iteration we have to solve the
equation

g(t) := −t + c + he−2t = 0.
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This additional problem is solved by applying Newton’s method as in [13] (note
that g′(t) < 0 for all t ∈ R).

We start from any supersolution v
(0)
h of (18) and we compute its solution,

iterating the procedure until ‖v
(n+1)
n − v

(n)
h ‖∞ < ε, where ε is a given tolerance.

We choose the time step h = h(x, y) in such a way |h(x, y)b(x, y, a∗)| ≤ Δx and
we discretize the unit ball B(0, 1) by means of (#directions × #circles) points
plus the central point.

The Effect of Boundary Conditions
As we have seen both models leads to a first order PDE which has to be comple-
mented with a boundary condition in order to select a unique solution and run
the approximation scheme. However, in practical applications boundary condi-
tions on the surface are seldom known, so it useful to analyse in more detail the
effect of different types of boundary conditions on the solution in order to define
a minimal set of conditions which will allow to compute the exact solution.

In this section, we will briefly analyse the effect of Dirichlet, Neumann and
state constraints boundary conditions on subsets of the boundary. Let us note
first that boundary conditions should be imposed in a weak sense. The typical
condition which defines a viscosity subsolution u of an equation of the form
H(x, u, ∇u) = 0, x ∈ Ω requires that for any test function ϕ ∈ C1(Ω) and
x0 ∈ ∂Ω local maximum point for u − ϕ

min{H(x0, u(x0), Dϕ(x0)), B(x0, u(x0), Dϕ(x0))} ≤ 0 (19)

where the function B is the operator describing the boundary conditions, f.e.
B(x, u, Du) = u−g for the Dirichlet condition. Similarly, the boundary condition
for supersolutions requires that for any test function ϕ ∈ C1(Ω) and x1 ∈ ∂Ω
local minimum point for u − ϕ

max{H(x1, u(x1), Dϕ(x1)), B(x1, u(x1), Dϕ(x1))} ≥ 0. (20)

The effect of the Dirichlet condition is to impose a value on u according to
the above conditions, in particular the value u(x) = g(x) is set at every point
where H(x, u(x), Dϕ(x)) ≥ 0 (for subsolutions) and H(x, u(x), Dϕ(x)) ≤ 0
(for supersolutions). Neumann boundary condition corresponds to the opera-
tor B(x, u, Du) = ∂u/∂n(x) − m(x) where n(·) represents the outward normal
to the domain Ω. A typical use of it is when we know (or we presume) that the
level curves of the surface are orthogonal to the boundary ∂Ω or to a subset of
it where we simply choose m(x) = 0. The state constraints boundary condition
is different from the above conditions since we do not impose neither a value
for u nor a value for its normal derivative ∂u/∂n(x) (cfr. [1]). In this respect
it has been interpreted as a ”no boundary condition” choice although this in-
terpretation is rather sloppy. In fact, a real function u bounded and uniformly
continuous is said to be a state constraints viscosity solution if and only if it is
a subsolution (in the viscosity sense) in Ω and a supersolution in Ω (i.e. up to
the boundary). It can be also stated as a Dirichlet boundary condition simply
setting g = Cg = constant provided Cg > max

x∈Ω
u(x).
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4 Numerical Experiments

We will show some tests for the two schemes implemented in MATLAB v.7,
compare the two methods and try to draw some conclusions.

Numerical Experiments for PSFS∞
We choose the following parameters: X0 = 0, Y0 = 0, d = 1, d′ = 4, l = 0.75 and
l′ = 3. The computational procedure follows the steps described in the previous
sections. We choose 16 controls for the discretization of the unit ball B(0, 1) (all
of them are placed on the boundary ∂B(0, 1)).

Test 1: tent upside down
In this test we consider a ridge tent upside down and its photograph (see Fig.
3). We choose 121×121 pixels grid and we solve the equation imposing Dirichlet
boundary condition on the silhouette of the tent.
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Fig. 3. Initial surface (left) and its photograph (right)

As we can see in Fig. 4, the reconstruction fails since the algorithm tries to com-
pute the maximal solution instead of the correct solution. However, the shape
of the domain (distorted in the photograph) is correctly straightened. Note that
in Fig. 4-left MATLAB connects all points of the surface despite there is a hole
in the domain of the reconstructed surface due to the fact that not all the back-
ground is visible by the camera. In Fig. 4-right the same surface is plotted by a
slightly different point of view without interpolation.

Test 2: Real image
In this test we used a real photograph where the effect of perspective is visible.
The surface is a sheet of paper with the shape of a roof tile. For this im-
age the parameter values are: l = 6.91 mm, d = 5.8 mm, l′ = 200 mm,
d′ = l′

l d = 167.87 mm, Δx = 0.05 mm. We note that we performed the light
correction (6) in the preprocessing step, so we can assume Imax = 1 during
computation. Figure 5 shows the photograph (128 × 128 pixels) and the sur-
face reconstructed using Dirichlet boundary condition only on the left and right
sides of the boundary and state constraints elsewhere (top and bottom sides).
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Fig. 5. The photograph, 128×128 pixels (left) and its reconstructed surface with mixed
Dirichlet and state constraints boundary condition (right)

We can see that the solution is quite good considering the fact that light source
(flash camera) is not far from the object and that direction of light source is not
perfectly vertical as the mathematical model would have required.

We also tried to reconstruct the surface with two more practical boundary
conditions. In the first case, we fixed a Dirichlet condition t0 only on a verti-
cal line in the center of the image (column 64) and then we turned over the
computed surface with respect to the value t0 (see Figure 6-left). Note that the
solution is not very sensitive with respect to value t0, so a rough knowledge of
the behavior of the surface can be sufficient. We can see that the solution is quite
good. We have a large maximum norm error on the boundary (17.7 mm, 41%
of the maximum height of the tile), but not inside. In fact, assuming that the
reconstructed surface in Figure 5-right is the exact solution, the average error
on all nodes for Figure 6-left is about 1.2 mm.

In the second case (see Figure 6-right), we fixed a Dirichlet condition t0 only
on the point (64, 64) (at the center of the image) and then we turned over the
computed surface as before. Note that in this case the solution has a shape very
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Fig. 6. Reconstructed surface with Dirichlet boundary condition on the center line
(left) and on the center point (right, different scale)
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Fig. 8. The photograph (left) and its reconstructed surface with Dirichlet boundary
condition (right)

different from the expected solution since it has a global maximum at the central
point (64, 64). In these three tests the iterative procedure converges respectively
in 167, 185 and 190 iterations, with ε = 10−6.

Numerical experiments for PSFSr

Test 3: tent upside down
In this test we consider a ridge tent upside down as in Test 1. We use a 100×100
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pixels initial image and we choose f = 1 and 16 × 2 + 1 controls. Convergence
is reached in 159 iterations. In Fig. 7 we show the result obtained by the PSFSr

algorithm imposing state constraints boundary condition on the boundary of
the square (i.e. the background). In this case the reconstruction is definitively
better than the previous one, considering that any boundary data was needed.
On the other hand, we observe that the hole in the domain due to the regions in
full shade is not reconstructed properly. In fact, the surfaces connecting the tent
and the background are really computed and they are not due to the MATLAB’s
interpolation.

Test 4: pyramid upside down
In the second test we consider a pyramid upside down with the vertex standing on
a flat background. We use a 128×128 pixels initial image and we choose f = 1/4.
We impose Dirichlet boundary condition on the boundary of the pyramid (so
we do not compute on the background). The initial image and the reconstructed
surface are shown in Fig. 8. In this case we obtain a perfect result.

5 Conclusions

The above discussion allow us to draw some partial conclusions:

1. The PSFSr is a more realistic model under flash lighting conditions. It allows
to compute a solution without a previous knowledge of the surface just applying
state constraints boundary conditions. However, this model has a more delicate
initialization and the corresponding algorithm does not converge for any initial
guess.
2. The PSFS∞ requires additional information on the boundary (state con-
straints will not work in every situation). The algorithm is simpler and will
converge starting from any initial guess.
3. The computational cost related to PSFSr is higher since it requires a Newton
iteration for every fixed point iteration.
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