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Abstract. We introduce and analyze a fast version of the semi-Lagrangian algorithm for front
propagation originally proposed in [M. Falcone, “The minimum time problem and its applications to
front propagation,” in Motion by Mean Curvature and Related Topics, A. Visintin and G. Buttazzo,
eds., de Gruyter, Berlin, 1994, pp. 70–88]. The new algorithm is obtained using the local definition
of the approximate solution typical of semi-Lagrangian schemes and redefining the set of “neighbor-
ing nodes” necessary for fast marching schemes. A new proof of convergence is needed since that
definition produces a new narrow band centered at the interphase which is larger than the one used
in fast marching methods based on finite differences. We show that the new algorithm converges to
the viscosity solution of the problem and that its complexity is O(N logNnb), as it is for the fast
marching method based on finite difference (N and Nnb being, respectively, the total number of nodes
and the number of nodes in the narrow band). A new sufficient condition for the convergence of the
standard finite difference fast marching method is also given. We present several tests comparing the
two algorithms and other fast methods (e.g., fast sweeping) on a series of benchmarks which include
the minimum time problem and the shape-from-shading problem.
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1. Introduction. The level set method is a clever and rather simple way to
describe an interface separating two or more regions with different physical phases.
As is well known, the method describes the evolution of the front by a continuous
representation function u(x, t) which is negative in the domain Ωt corresponding to
one of the phases, positive outside that domain, and changes sign across the interfaces.
A comprehensive introduction to the level set method as well as to several applications
and references can be found in [19] and [32].

The level set method leads to a nonlinear first order PDE whenever the interface
evolution is simply driven by a normal velocity and (possibly) a given advection term.
More complicated types of evolution consider the normal velocity as a function of the
curvature and/or of other geometric parameters of the interface, and this leads to
second order nonlinear PDEs (or integrodifferential equations).

The typical model problem for an interface which evolves in the normal direction
driven by a given scalar velocity c(x) : R

n → R leads to the first order Hamilton–
Jacobi equation{

ut(x, t) + c(x)|∇u(x, t)| = 0 for x ∈ R
n , t ∈ (0,+∞),

u(x, 0) = u0(x) for x ∈ R
n,

(1)
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where the initial condition u0 must be a representation function of the initial position
of the front Γ0 = ∂Ω0. Note that u0 is unknown since Γ0 is the only initial datum,
so that the first step is usually to compute u0. The above problem can be simplified
when the evolution is monotone (increasing or decreasing), i.e., when either Ωt ⊂ Ωt+s

or the reverse inclusion are satisfied for any t, s > 0. For monotone types of evolution,
it has been proved in [17] (see also [26]) that (1) can be replaced by the stationary
equation {

c(x)|∇T (x)| = 1 for x ∈ R
n\Ω0,

T (x) = 0 for x ∈ ∂Ω0,
(2)

where we assume

c > 0(3)

and T represents the time needed to transfer a point x ∈ R
n\Ω0 to Ω0 by appropriate

dynamics (see below). In fact, the link between the two equations is simple: if T is
the viscosity solution of (2), then u(x, t) = T (x) − t is the viscosity solution of (1). It
is worth noting that the second problem is easier to solve since it does not require the
additional computation of u0, which requires the solution of another Hamilton–Jacobi
equation of type (2) to compute the (signed) distance function to Ω0. Moreover, the
knowledge of T gives a description of the interface for every time t using the fact
that Γt = ∂Ωt = {x ∈ R

n : T (x) = t}. On the other hand, (1) is preferable to its
stationary version whenever it is needed to derive a high order scheme that has the
same efficiency as the formally first order one (see, e.g., [1]). However, some results
on high order methods for stationary first order Hamilton–Jacobi equations including
(2) are available, e.g., in [15].

Note that the above stationary approach relies on the link between the propaga-
tions of fronts and the minimum time problem of control theory. In fact, as shown in
[17], by the change of variable (Kružkov transform)

v(x) = 1 − e−T (x)(4)

we can transform (2) into the equation⎧⎨⎩
v(x) + max

a∈B(0,1)
{c(x)a · ∇v(x)} = 1 for x ∈ R

n\Ω0,

v(x) = 0 for x ∈ ∂Ω0,
(5)

where B(0, 1) is the unit ball centered in 0. This is the Hamilton–Jacobi–Bellman
equation of a minimum time problem for the dynamics{

ẏ(t) = −c(y)α(t), t ∈ (0,+∞),

y(0) = x,
(6)

where α(·) ∈ A =
{
α(·) : [0,+∞) → B(0, 1) ⊂ R

n, measurable
}
. We will denote by

y(t;α, x) the solution of the system corresponding to the control α and to the initial
condition x. The usual requirement in order to have existence and uniqueness for the
trajectories under the Carathéodory conditions is

c(x) Lipschitz continuous and bounded.(7)
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Let us define the cost functional

Jx(α(·)) = inf
{
t : y(t;α, x) ∈ Ω0

}
≤ +∞.

It is well known that the minimum time function

T (x) = inf
α(·)∈A

Jx(α(·))(8)

is the unique viscosity solution of (2) (see, e.g., [2, 4]).
We will focus our attention on the numerical solution of (2). It should be noted

that a fast marching method has a lower cost with respect to the corresponding
classical iterative method (or fixed point method), which computes the solution on
the whole grid at every iteration. The classical fast marching method based on finite
differences (FM-FD) was proposed in [33] as an acceleration method for a monotone
first order iterative finite difference scheme (see [7] for a second order version of the
scheme and [8] for a general convergence result). Since semi-Lagrangian schemes have
shown to be more accurate than the finite difference schemes corresponding to the
same order, it is natural to extend the ideas behind the FM-FD method to this class
of schemes. In the framework of semi-Lagrangian schemes several convergence results
and a priori error estimates have been obtained via control arguments since these
schemes correspond to a discrete version of the dynamic programming principle; see
[2] and [13]. Moreover, these schemes do not require an explicit and restrictive CFL
condition for stability (see [16]). It is interesting to note that the first tentative steps
in this direction can be found in [38] using a different approximation scheme. More
recently, a semi-Lagrangian scheme has been proposed by Sethian and Vladimirsky
in [34] in a more general framework which includes anisotropic front propagation on
unstructured grids.

Our main contribution here is to introduce and analyze a new fast marching ver-
sion of a semi-Lagrangian scheme, for which a priori error estimates are available in
[12], and to prove an upper bound on its computational cost. We will also review
the basic features of the FM-FD method and give a complete proof of its convergence
under an explicit CFL condition which guarantees that the scheme is always mean-
ingful and there are no complex solutions. To our knowledge this condition appears
for the first time in the literature; our proof is presented in the appendix. Lastly we
will recall the fast sweeping method studied by Zhao [39] (see also [37, 20, 21, 27, 28]
for other sweeping methods and extensions) and also provide a sweeping version of
our algorithm. Further extensions and new applications of the scheme presented in
this paper can be found in [9].

The paper is organized as follows. In section 2 we recall the basic features of
the FM-FD method introduced in [33] to solve (2) when c(x) has a constant sign
in its domain of definition. An example which shows that the FM-FD scheme can
produce complex solutions is given in the same section, and the proof of convergence
under a new CFL condition which always guarantees real solutions is presented in
the appendix. Section 3 is devoted to the presentation of the fast marching semi-
Lagrangian method (FM-SL) for (5). Section 4 contains some properties of the FM-
SL scheme that will be useful in establishing its convergence, which will be proved
in section 5. In the same section we analyze the computational complexity, showing
that the FM-SL scheme has a complexity of order O(N ln(Nnb)), where N is the total
number of nodes of our computational grid and Nnb is the number of nodes in the
narrow band (bounded by N). In section 6 we also present other fast algorithms and
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give the sweeping version of our method. Finally, section 7 is devoted to numerical
tests and to comparisons between several FM schemes on a number of benchmarks.

2. The fast marching methods based on finite differences. The fast march-
ing method has been introduced to reduce the computational effort needed to solve (2).
The basic level set algorithm is based on a finite difference discretization and on an
iterative procedure Tn+1 = F (Tn) which computes the approximate solution every-
where in R

n \ Ω0 at every iteration. The FM-FD method instead follows the front
concentrating the computational effort where it is needed, i.e., in a small neighbor-
hood of the front, and it updates that neighborhood at every iteration to avoid useless
computations. This is done by dividing the grid nodes into three subsets: far nodes,
accepted nodes, and narrow band nodes. The narrow band nodes are the nodes where
the computation actually takes place and their value can still change at the following
iterations. The accepted nodes are those where the solution has been already com-
puted and where the value cannot change in the following iterations. Finally, the far
nodes are the remaining nodes where an approximate solution has never been com-
puted. In physical terms, the far nodes are those in the space region which has never
been touched by the front, the accepted nodes are those where the front has already
passed through, and the narrow band nodes are, iteration by iteration, those lying in
a neighborhood of the front.

The algorithm starts labeling as accepted only the nodes belonging to the initial
front, i.e., belonging to Γ0 = ∂Ω0, and ends only when all the nodes have been
accepted. In this section, we will briefly sketch the FM-FD scheme for (2). In order
to avoid cumbersome notation we will restrict the presentation to the case n = 2. In
what follows, we will always consider the case of a positive normal velocity; i.e., we
assume c(x) > 0 to guarantee a monotone (increasing) evolution of the front. The
results in this section can be easily generalized to the n-dimensional case and to the
case c(x) < 0.

We will take a square Q large enough to contain Ω0; this is the domain where
we want to compute T . Boundary conditions will be given on ∂Q and Γ0 but, as a
first step, we will consider the algorithm without boundary conditions on ∂Q. The
implementation of boundary conditions in the scheme will be discussed in section 5.

We will assume that we are working on a structured grid of M ×N nodes (xi, yj),
i = 1, . . . , N and j = 1, . . . ,M . Δx and Δy will denote the (uniform) discretization
steps, respectively, on the x and y axes. We will denote by Ti,j and ci,j , respectively,
the values of T and c at (xi, yj).

Let us write (2) as

T 2
x + T 2

y =
1

c2(x, y)
.(9)

We replace the partial derivatives Tx and Ty by first order finite differences, and we
choose for simplicity M = N and Δx = Δy. It is well known that in order to obtain
an approximation of the viscosity solution, an up-wind correction must be introduced.
This leads to the equation(

max

{
max

{
Ti,j − Ti−1,j

Δx
, 0

}
,−min

{
Ti+1,j − Ti,j

Δx
, 0

}})2

+

(
max

{
max

{
Ti,j − Ti,j−1

Δx
, 0

}
,−min

{
Ti,j+1 − Ti,j

Δx
, 0

}})2

=
1

c2i,j
.(10)
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2.1. The FM-FD algorithm. Let us briefly recall the main definitions and
steps of the FM-FD method.

Definition 2.1 (neighboring nodes for the finite difference scheme). Let X =
(xi, yj) be a node. We define the set of neighboring nodes to X as

NFD(X) =
{

(xi+1, yj), (xi−1, yj), (xi, yj+1), (xi, yj−1)
}
.

These are the nodes appearing in the stencil of the first order finite difference
discretization. The definition can be easily extended to the n-dimensional case.

Sketch of the FM-FD algorithm.
Initialization.
1. The nodes belonging to the initial front Γ0 are located and labeled as accepted.

Their value is set to T = 0 (they form the set Γ̃0).

2. The initial narrow band is defined taking the nodes belonging to NFD(Γ̃0),
external to Γ0. These nodes are labeled as narrow band, setting the value to
T = Δx

c .
3. The remaining nodes are labeled as far, and their value is set to T = +∞ (in

practice, the maximum floating point number).
Main cycle.
1. Among all the nodes in the narrow band we search for the minimum value of

T . Let us denote this node by A.
2. A is labeled as accepted and is removed from the narrow band.
3. The nodes in NFD(A) which are not accepted are labeled as active. If among

these nodes there are nodes labeled as far, they are transferred to the narrow
band.

4. The value of T in the active nodes is computed (or recomputed), solving the
second order equation (10) and taking the largest root.

5. If the narrow band is not empty, go back to 1.
Note that the narrow band is a reasonable approximation of the level set of T (x, y).

The main interest in the FM-FD method is that its computational cost is bounded.
In fact, every node cannot be accepted more than one time and every node has just
four neighbors, so the bound on the maximum number of times a single node can be
recomputed is four. This corresponds to a computational cost of O(N), where N is the
total number of nodes. We should add to that cost the search for the minimum value
of T among the nodes in the narrow band, which costs O(ln(Nnb)), where Nnb is the
number of nodes in the narrow band. In conclusion, the algorithm has a global cost
of O(N ln(Nnb)) operations (see [38, 32, 33] for further details on the computational
cost). This is not the case for the usual iterative/fixed point algorithm since in that
case the approximate solution is obtained in the limit and, in practice, no one knows
when the stopping criterion will apply; i.e., the maximum number of iterations is
virtually unbounded.

Let us observe that it is necessary to introduce some conditions or to modify the
scheme in order to avoid inconsistencies due to the appearance of imaginary solutions.
In fact, let us consider the discretization (10) and suppose that

Ti,j < Ti+1,j , Ti,j < Ti,j−1, Ti,j > Ti−1,j , Ti,j > Ti,j+1.

It is easy to check that (10) corresponds to(
Ti,j − Ti−1,j

Δx

)2

+

(
Ti,j+1 − Ti,j

Δx

)2

=
1

c2i,j
,
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Fig. 1. A configuration with complex roots.

which gives

Ti,j =
Ti−1,j + Ti,j+1 ±

√
2
(

Δx
ci,j

)2

− (Ti−1,j − Ti,j+1)
2

2
.(11)

We already noted that the term under the square root can be negative. Obviously this
must be avoided since complex roots have no physical meaning. A situation where
this occurs is the following example.

Consider the case where the initial front is the union of two points, i.e., Γ0 =
P ∪ Q, Q = (Δx,Δy) and P = (2Δx, 4Δy) (see Figure 1). Let us consider the
following velocity:

c(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε, y ≤ Δy,

ε + 1−ε
Δy (y − Δy), Δy ≤ y ≤ 2Δy,

1 − 1−ε
Δy (y − 2Δy), 2Δy ≤ y ≤ 3Δy,

ε, y ≥ 3Δy.

(12)

In this case the algorithm initializes the narrow band, computing a large value
for B when ε is small and a small value for the node A which will be the first node
accepted (after Γ0). When the node X has to be computed, its value depends on
T (A) and T (B). Since c(X) = 1 and T (A)− T (B) is large (for ε small) the radicand
in (11) will be negative (as numerical tests confirm).

This difficulty can be solved by either choosing the positive part of the radicand
(as suggested in [22]) or changing discretization, as in [39]. However, both choices
lead to a modification of the scheme, which can be difficult to handle when looking
for theoretical results. We prefer to avoid changing the scheme, and we prove that
under the CFL-like condition

Δx ≤ (
√

2 − 1)
cmin

Lc
(13)

the algorithm always computes real solutions at every node (here cmin is the minimum
value of c, Lc is its Lipschitz constant, and again Δx = Δy). Condition (13) has a
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clear meaning and allows us to give a proof of convergence to the viscosity solution. To
our knowledge this is the first time this condition appears in the literature; a complete
proof of the convergence result (Proposition 2.1) will be given in the appendix.

Let us denote by A the node in the narrow band where the minimum value of T is
attained. The algorithm labels A as accepted and starts to compute the neighboring
nodes which are not accepted.

Proposition 2.1. Let X = (xi, yj) ∈ NFD(A) be the node where the FM-FD
method computes a solution. Let us assume that

cmin = min
Q\Ω0

c(x) > 0(14)

and that the following CFL-like condition holds true:

Δx ≤ (
√

2 − 1)
cmin

Lc
,(15)

where Lc denotes the Lipschitz constant of c. Then we have

T (A) ≤ T (X) ≤ T (A) + fX ,(16)

where fX := Δx/c(X).
The above result is crucial in order to obtain convergence in a finite number of

steps. In fact, it shows that the minimum value of the nodes in the narrow band (which
is actually the only value accepted at every iteration) is exact within the consistency
error of the scheme. An approximate value is considered to be exact if the algorithm
cannot replace it with a strictly lower value at any of the following iterations.

3. The fast marching method based on the semi-Lagrangian scheme.
We will study a fast marching version of the semi-Lagrangian scheme studied in [12]
under the assumptions (3) and (7) that we will keep here. It was proved in [3] that the
numerical scheme stems from a discrete version of the dynamic programming principle
applied to (6); this leads to the equation⎧⎨⎩

w(x) = min
a∈B(0,1)

{βw(x− hc(x)a)} + 1 − β for x ∈ R
n\Ω0,

w(x) = 0 for x ∈ ∂Ω0,
(17)

where β = e−h, h is the time step for the (hidden) dynamics, and w is an approxi-
mation of v. We will consider for simplicity a structured grid G, denoting its nodes
by xi , i = 1, . . . , N , i.e., G = {xi, i = 1, . . . , N}. Note that the same scheme can
be implemented on an unstructured grid as in [31]. We write (17) at every node,
obtaining⎧⎨⎩

w(xi) = min
a∈B(0,1)

{βw(xi − hc(xi)a)} + 1 − β for xi ∈ G\Ω0,

w(xi) = 0 for xi ∈ G ∩ Ω0,
(18)

where we defined w = 0 also in the internal nodes of Γ0. It has been shown in [12]
that under our assumptions (3) and (7), equation (18) has a unique solution w in the
class of piecewise linear functions (P1 in the finite element notation) defined on the
grid. Let us note that by applying the Kružkov transform (4) to the equation, one
can also treat the case when c = 0 since in that case the minimum time function to
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the target (i.e., the initial configuration of the front in the front propagation problem)
will have infinite value at some points, whereas v will always stay bounded by 1. This
allows us to run the computations also for c = 0 and to treat problems with state
constraints (as we will see in the last section).

We will always approximate the v variable and use the fact that the Kružkov
transform is monotone. In fact, since T1 > T2 if and only if v1 > v2 we can work on
the v variable without changing the rules for the update of the narrow band because
the crucial point is to label as accepted the node in the narrow band, where T (or v)
attains its minimum. The above rule guarantees that we will process the nodes in an
ordering which corresponds to increasing values of v.

The idea which is behind the FM-SL method is rather simple: we follow the
initialization and all the steps of the classical FM-FD method except the step where
the value at the node xi is actually computed. That step would require us to iterate
until convergence the scheme

w(xi) = min
a∈B(0,1)

{βw(xi − hc(xi)a)} + 1 − β,(19)

so that the typical fixed point iteration is applied “locally” at every single node
following the order indicated by the FM-FD method. We will prove that for a semi-
Lagrangian scheme based on a piecewise linear space reconstruction, just a single
iteration is needed to compute the exact (within the accuracy of the scheme) value at
every node so that the computational effort is very limited and of the same order as
the FM-FD method.

3.1. Fast minimum search in B(0, 1). We will start improving the minimum
search which is typical of the semi-Lagrangian schemes. The search for a minimum
in the unit ball B(0, 1) will be solved algebraically for a linear interpolation, which
allows us to compute the values w(xi−hc(xi)a) using the known values at the nodes.
Clearly, a new algebraic solution must be obtained (if possible) for other high order
interpolations. Let us just recall that for the standard semi-Lagrangian scheme the
search for the minimum is usually restricted to a discretization of the unit ball B(0, 1)
which takes into account r points (or controls in the minimum time terminology)
a1, a2, . . . , ak, . . . , ar ∈ B(0, 1).

For example, one can construct a uniform grid on ∂B(0, 1) with step Δθ = 2π/r.
To find the minimum, for every ak the value w(xi − hc(xi)ak) is actually computed
by interpolation. Although the choice of the type and order of the interpolation is
completely free, the most popular choices are linear, using the three values at the
nodes which are closer to xi−hc(xi)ak, and bilinear, using the four values of w at the
vertices of the cell containing xi − hc(xi)ak.

Once all the values for ak, k = 1, . . . , r, are computed the minimum is obtained
by comparison. It is worth noting that this algorithm is quite slow and requires a
high computational cost; however, it can be applied to every high order interpola-
tion. Moreover, it should be noted that this minimization problem is quite difficult
since we expect to have nondifferentiable or even discontinuous solutions (if state
constraints/obstacles are present in the domain) and that the comparison algorithm
is very simple to implement and reasonably fast in low dimension especially when
the search for the minimum can be restricted to the boundary of B(0, 1) (as will be
the case in many examples). However, other algorithms for the minimization of non-
smooth functions can be applied, and the interested reader can find in [6] and [14]
recent improvements on the solution of this problem. These algorithms converge to
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Fig. 2. Search for optimal control.

the minimum in the limit, so they cannot be applied here since we want to have an
exact evaluation of the computational cost.

It is important to note that the time step h in (19) can vary at every node. We
will denote by hi = h(xi) the time step corresponding to the node xi, by ci = c(xi)
the velocity at xi, and by βi = e−hi . When ci > 0 it is always possible to choose

hi =
Δx

ci
.(20)

In this way (19) can be written as

w(xi) = min
a∈B(0,1)

{βiw(xi − Δx a)} + 1 − βi.(21)

In this situation, the nodes where ci = 0 are actually treated apart from the other
nodes: we just assign them the value w = 1 (which corresponds to T = +∞) without
any additional computation.

The method we propose here for the minimization problem has a low dimensional
cost since for linear interpolation the search is restricted to the boundary of the unit
ball. This is not a real restriction since, for our applications, the minimum in the unit
ball is attained at the boundary. Later in this section we will show how this algorithm
can be applied as a building block of our FM-SL scheme.

For simplicity, let us examine the situation in R
2 considering a set of four cells

each of side length Δx centered at the origin (see Figure 2). We want to compute
the minimum of the function w((0, 0) − Δx a) for a = (cos θ, sin θ) and θ ∈ [0, 2π).
Let us introduce a vector m = (m1,m2, . . . ,m8); the values of its components will
be defined below. The minimum value for which we search will be given by p =
min{m1,m2, . . . ,m8}.

Let us define the first four components of m,

m1 = w(Δx, 0) , m2 = w(0,Δx) , m3 = w(−Δx, 0) , m4 = w(0,−Δx),

and let us search for the minimum in every orthant.

Orthant I. Let w1, w2, and w3 be the values of w corresponding, respectively, to
the nodes (Δx, 0), (Δx,Δx), and (0,Δx). The unique linear function f(x, y) satisfying
the conditions

f(Δx, 0) = w1 , f(Δx,Δx) = w2 , f(0,Δx) = w3
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is

f(x, y) = ax + by + c,(22)

where

a =

(
w2 − w3

Δx

)
, b =

(
w2 − w1

Δx

)
, c = w1 − w2 + w3.

Let us define the real function

F (θ) = f(Δx cos θ,Δx sin θ) = aΔx cos θ + bΔx sin θ + c , θ ∈ [0, 2π)(23)

and look for the minimum of F (θ) in the interval (0, π/2). Note that the extreme
values θ = 0 and θ = π/2 are not included since the values at the extrema of that
interval have already been included in m (they are m1 and m2). By differentiating
with respect to θ we obtain

F ′(θ) = 0 ⇔ θ = arctan(b/a).

The interesting case is when w2 < w1 and w2 < w3; otherwise the minimum is w1 or
w3.

In this case, we get

a = 0 , b = 0 , b/a > 0 , arctan(b/a) ∈ (0, π/2),

which means that the relative minimum is at θ∗1 = arctan(b/a) and we set m5 = F (θ∗1).
If w2 ≥ w1 or w2 ≥ w3, we set m5 = +∞ (or the highest machine number).

Orthant II. Let w3, w4, and w5 be the values of w, respectively, at the nodes
(0,Δx), (−Δx,Δx), and (−Δx, 0). The unique linear function f(x, y) such that

f(0,Δx) = w3 , f(−Δx,Δx) = w4 , f(−Δx, 0) = w5

is

f(x, y) = ax + by + c,

where

a =

(
w3 − w4

Δx

)
, b =

(
w4 − w5

Δx

)
, c = w3 − w4 + w5.

Again we will consider the composite function F (θ) defined in (23), and we observe
that it has a relative minimum in (π/2, π) if and only if w4 < w3 and w4 < w5. In
this case we have

a = 0 , b = 0 , b/a < 0 , arctan(b/a) ∈ (−π/2, 0).(24)

Since we are in the second orthant the value of θ where the minimum for F is attained
is θ∗2 = arctan(b/a) + π. Proceeding as in the first orthant we set m6 = F (θ∗2).

If w4 ≥ w3 or w4 ≥ w5, we set m6 = +∞.
The analysis of the third and fourth orthants follows in the same way and will be

skipped.
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Once all the components of m have been set, we just compute p = min{m1,m2, . . . ,
m8} and substitute it in the expression

w(0, 0) = βp + 1 − β.(25)

This is done at every fixed point iteration until convergence. It is important to note
that the above linear interpolation has a great advantage: the computation of the
correct value of w(0, 0) does not require more than one iteration given the values at
the neighboring nodes (along the axis directions and the diagonals) since F (θ) will not
depend on w(0, 0). This property will not hold for other high-order interpolations,
e.g., quadratic interpolation. Another advantage of linear interpolation with respect
to the comparison of the values in a discrete unit ball is that it gives the exact value
of the optimal direction at the cost corresponding to a discretization of B(0, 1) by
just 8 directions.

3.2. The FM-SL scheme. This section is devoted to the presentation of the
fast marching version of the SL-algorithm. For simplicity the presentation is given
in R

2, but the algorithm can be easily extended to R
n. Let us start introducing the

following definitions.
Definition 3.1 (neighboring nodes for the SL scheme). Let X = (xi, yj) be a

node of the grid. We define

NFD(X) =
{

(xi, yj+1), (xi, yj−1), (xi−1, yj), (xi+1, yj)
}
,

D(X) =
{

(xi+1, yj+1), (xi+1, yj−1), (xi−1, yj+1), (xi−1, yj−1)
}
,

NSL(X) = NFD(X) ∪D(X).

The above definition is a natural extension of Definition 2.1 for the semi-Lagrangian
scheme. According to the new definition, the nodes in the narrow band will also in-
clude the diagonal directions and not only the four directions N, S, E, W, as in the
FM-FD method of section 2.

Sketch of the FM-SL algorithm.
Initialization (see Figure 3).
1. The nodes belonging to the initial front Γ0 are located and labeled as accepted.

Their value is set to w = 0. We will denote this set of nodes by Γ̃0.
2. The initial narrow band is defined according to the Definition 3.1, taking

the nodes belonging to NSL(Γ̃0) external to Γ0. These nodes are labeled as
narrow band. Their value is set to w = 1 − e−

Δx
c (which corresponds to T =

Δx/c) if they belong to NFD(Γ̃0), or to w = 1 − e−
√

2Δx
c (which corresponds

to T =
√

2Δx/c) if they belong to D(Γ̃0).
3. We label as far all the remaining nodes of the grid; their value is set to w = 1

(which corresponds to the value T = +∞).
Main cycle.
1. Among all the nodes in the narrow band we search for the minimum value of

w. Let us denote this node by A.
2. The node A is labeled as accepted and is removed from the narrow band.
3. We label as active the nodes in NSL(A) which are not accepted. If there are

far nodes, they are moved into the narrow band.
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Fig. 3. Initialization for FM-SL method, case c > 0.

4. We compute (or recompute) the value w at the nodes belonging to NFD(A)
which are active, iterating the fixed point operator

w(xi) = min
a∈B(0,1)

{βiw(xi − hicia)} + 1 − βi ,(26)

where hici = Δx. Note that just one iteration is needed, as we will see in the
following sections. Then we compute by the same formula the value at the
remaining active nodes in NSL(A) \NFD(A).

5. If the narrow band is empty, the algorithm stops; otherwise it goes back to
step 1.

Although the algorithm advances the narrow band also in the diagonal directions,
according to the new definition, it computes first the values at the neighboring nodes
in the directions N, S, E, W (i.e., the finite difference directions) and then passes to
the diagonal directions.

Some extensions: Obstacles, infinite velocity. We have seen that one can use
our algorithm to deal with a front propagation with obstacles, i.e., regions where
c vanishes. In [36, 18] the problem has been analyzed and several tests have been
presented for a semi-Lagrangian method based on the linear interpolation, which
treats the obstacle in a very simple way. The algorithm just assigns to the nodes
belonging to an obstacle the value w = 1 in order to impose (indirectly and easily) a
state constraints boundary conditions. In order to use the fast marching technique we
just have to be careful and distinguish between nodes initialized to the value w = 1
because they are far and the ones to which was assigned the value w = 1 because they
belong to an obstacle. In section 7 (Test 5) we will show a front propagating in the
presence of obstacles.

Another interesting extension for applications to image processing is when the
domain of computation contains points with infinite velocity. This is the case, for
example, in the shape-from-shading problem when we have a point of maximal light
intensity in the image (see, e.g., [29, 24]). Let us illustrate the idea which is behind
our solution. Let xi0 be a node such that

lim
x→xi0

c(x) = +∞.

Our equation c(x)|∇T (x)| = 1 can be written as

|∇T (x)| = g(x),(27)
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where g(x) = 1/c(x). Clearly, (27) is a degenerate eikonal equation since g vanishes
at xi0 .

In order to compute w(xi0), we can set, according to (20), hi0 = 0 and βi0 = 1
and proceed as before, setting in (26)

hi0ci0 = Δx.(28)

Let us extend the function h(x) outside the nodes in the domain Q\Ω0. Our choice
(28) can be justified by the fact that we would expect in our algorithm

lim
x→xi0

c(x) = +∞ , lim
x→xi0

h(x) = 0, and lim
x→xi0

c(x)h(x) = Δx.

Note that even if this argument is heuristic, it assigns to the node xi0 the exact value
for w. In fact, by (26), we get

w(xi0) = min
a∈B(0,1)

{1w(xi0 − Δx a)} + 1 − 1 = w(xi0 − Δxa∗),

where a∗ is the optimal control. Since the front has an infinite velocity at xi0 the
minimum time of arrival on it coincides with the minimum time of arrival on the
circle of radius Δx centered at xi0 . In section 7 (Tests 6 and 7) we will show an
application to a front propagation problem and to the shape-from-shading problem.
It is interesting to note that theoretical results on discontinuous Hamiltonians can be
found in [35] and [5].

4. Properties of the FM-SL scheme. We start with the following easy result
on the semi-Lagrangian discretization.

Proposition 4.1. Let X be a node and assume that w(X), defined by (26), is
computed by interpolation using the three values w(1), w(2), w(3). Then

w(X) ≥ min
{
w(1), w(2), w(3)

}
.(29)

Proof. Let β = e−h, h > 0, and a∗ be the optimal direction/control at X. The
inequality

βw(X − hicia
∗) + 1 − β ≥ w(X − hicia

∗)

is satisfied if and only if w(X − hicia
∗) ≤ 1. Since w is always less than or equal to 1

(due to the Kružkov transform) we have proved that

w(X) ≥ w(X − hicia
∗).(30)

Since a simple property of linear interpolation guarantees that

max
{
w(1), w(2), w(3)

}
≥ w(X − hicia

∗) ≥ min
{
w(1), w(2), w(3)

}
(31)

by (30) and (31) we end the proof.
In order to prove that the fast marching version of our semi-Lagrangian scheme

converges to the viscosity solution in a finite number of steps we have to prove first that
the fast method for the minimum analyzed in section 3.1 matches the fast marching
technique. This is necessary since the narrow band of the FM-SL method is larger
than the narrow band of the FM-FD method as a consequence of the new definition
of neighboring nodes. In particular we will show that the algorithm automatically
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Fig. 4. Analysis of the minimum in orthant I.

rejects far nodes from the computation as in the standard up-wind finite difference
discretization.

Let X be the node where we want to compute w(X). Without loss of generality,
we will assume that the optimal value is attained at a direction θ∗ ∈ [0, π/2], i.e.,

a∗ = (cos θ, sin θ) , θ ∈ [0, π/2].(32)

We will examine in detail all the possible configurations for this situation, which will
be referred to in the following as the “minimum in orthant I” case (see Figure 4). For
simplicity, let us assume c > 0 so that a node is labeled as far if and only if its value
is w = 1.

Proposition 4.2. Let X be a node and let w(X) be defined by (26). The value
w(X) will not be computed by interpolation using nodes labeled as far.

Proof. Let us give the proof for the minimum in orthant I. The analysis for the
other orthants is similar and can be easily obtained by symmetry arguments.

1. w1 = w2 = w3 = 1: This configuration cannot occur. In fact, since the
minimum is attained in orthant I we should have w4 = w5 = w6 = w7 =
w8 = 1. But this is not possible since we compute at X only when at least
one of the nodes belonging to NSL(X) has been labeled as accepted in one of
the previous iterations, and an accepted node must have a value lower than 1.

2. Among w1, w2, and w3 there are two values equal to 1.
(a) w1 = w3 = 1: this case cannot occur. In fact, since the minimum is

attained in orthant I we must have w2 ≤ w1, w3, w4, . . . , w8. The node
that must be labeled as accepted is the one corresponding to the value
w2. This implies that the values w1 and w3 must be computed before
X (see the sketch of the algorithm).

(b) w1 = w2 = 1: the minimum value is w3. A new iteration to compute
w(X) would not give a lower value, so the optimal value is obtained in
just one iteration.

(c) w2 = w3 = 1: the minimum value is w1. Again, we will not get a lower
value iterating, and the optimal value is obtained in just one iteration.

3. Among w1, w2, and w3 only one value is equal to 1.
(a) w2 = 1: since f is linear the minimum will be attained by w1 or w3.

The optimal value is obtained in just one iteration.
(b) w1 = 1, w3 ≤ w2: the minimum is w3.
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(c) w1 = 1, w3 > w2: this is the most delicate case since w2 < w1, w3. The
minimum for F will be attained at some θ∗ ∈ (0, π/2). The value w(X),
obtained by linear interpolation, will not be correct since it depends
on w1 = 1, which is a conventional value. Moreover, note that a new
iteration of the fixed point map at X will not make w(X) decrease since
w1 is frozen and so is w(X). If this case could occur, we would not
get convergence to the correct value even in the limit on the number
of iterations. Note that this difficulty can occur neither for the global
semi-Lagrangian scheme where all the nodes are computed at the same
iteration nor for the FM-FD method where the values corresponding to
far nodes are not used in the stencil. The following argument shows
that this case also cannot occur for the FM-SL scheme. Since w1 = 1,
the corresponding node is labeled as far at the current iteration. This
implies that the nodes labeled as accepted at the previous iteration do
not belong to NSL(w1). As a consequence, w2 belongs to the narrow
band. By Proposition 4.1 we have w(X) > w2. This implies that X
cannot be labeled as accepted before the nodes corresponding to w2.
Once w2 becomes accepted the algorithm computes w1 and w3 before
computing w(X) so that the values at nodes labeled as far will not
contribute.

(d) w3 = 1, w1 ≤ w2: the minimum is w1. The optimal value is obtained in
just one iteration.

(e) w3 = 1, w1 > w2: analogous to case (3c).

5. Convergence of the FM-SL scheme in a finite number of steps. As
for the FM-FD method we have to prove that the minimal value of the nodes of the
narrow band cannot decrease if we iterate the fixed point operator; i.e., it coincides
with the value obtained by the discrete operator working on all the nodes. As we
have seen, the values at the nodes belonging to the narrow band are not accepted
all together. Only the minimal value is accepted at every iteration (this is a very
pessimistic choice which simplifies the theoretical result). The following proposition
shows the bounds on the number of times that one node can be recomputed, and it
is a building block for the convergence of the scheme.

Proposition 5.1. Let X be a node in the narrow band such that w(X) =
wold(X). Let us assume that at the current iteration the algorithm needs to compute
a new value wnew(X) for X. Moreover, let us assume that at the current iteration
the following property holds true:

If A belongs to the narrow band and B is accepted, then w(A) ≥ w(B).(33)

The following properties hold:
1. If the value wold(X) was computed at an iteration in which a grid point

A1 ∈ NFD(X) was labeled as accepted, then it is impossible that wnew(X) <
wold(X).

2. If the value wold(X) was computed at an iteration in which a grid point A2 ∈
D(X) was labeled as accepted, then to the node X a new value wnew(X) <
wold(X) can be assigned but it will always satisfy the inequality wnew(X) ≥
w(A2).

Proof. Let us start with the first statement.
1. Let us assume that when the value wold was assigned to X the node A1 was

the (unique) node belonging to NFD(X), which had been labeled as accepted.
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When the algorithm computed w(X) = wold(X) we certainly had

min
a∈∂B(0,1)

w(X − Δx a) = w∗ ≤ w(A1)

since there is a direction/control ā ∈
{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
such that

w(X−Δx ā) = w(A1). The only possibility of having at X a value lower than
wold(X) in the following iterations of the algorithm is that a value assigned to
a node belonging to NSL(X) was lower than w∗. However, by Proposition 4.1
we know that this value cannot be computed using in the stencil the values
at the nodes of the actual narrow band because they are all greater than
w(A1) ≥ w∗, which has been accepted (as (33) assures). A lower value could
be computed only using a stencil which contains nodes already accepted in
one of the previous iterations since they all have values lower than w(A1).
This is not possible since all the nodes which are neighbors of those accepted
nodes have been computed already and they have a value greater than or
equal to w(A1) since they have not been labeled as accepted.

2. Let us assume, for simplicity, that the node A2 is the unique node belonging
to D(X) which has been labeled as accepted and let wold(X) be the value
assigned at X at the same iteration. When a node A1 ∈ NFD(X) has been
labeled as accepted before A2, the result holds true by the arguments of the
above case 1.
Let us assume that A2 is the unique neighbor of X which has been labeled
as accepted. Then we have

min
a∈∂B(0,1)

w(X − Δx a) = w∗ ≥ w(A2).

It is always possible that using w(A2) one can obtain a new value wnew(X)
lower than wold(X). However, by (33) and Proposition 4.1 all the new values
will be greater than or equal to w(A2); therefore wnew(X) ≥ w(A2).

Remark 5.1. Note that the previous proposition allows us to accelerate the al-
gorithm. In fact, one can save CPU time by avoiding recomputing the values at the
nodes corresponding to case 1. However, they cannot be labeled as accepted before
their value is the minimum in the narrow band. An important consequence of Propo-
sition 5.1 and the above observation is that every node can be computed at most
5 times; this is one of the reasons why the CPU time for FM-SL is slightly larger
than that for the FM-FD method, where a node can be computed at most 4 times.
We will see in the last section that the FM-SL method produces a more accurate
approximation of the viscosity solution, which justifies a small increment in the CPU
time.

The following result is an analogue of Proposition 2.1, and it is crucial to prove
convergence in a finite number of steps.

Proposition 5.2. Let w be defined in (26) and let w(X) be the value assigned
at X at the same iteration when a node Z ∈ NSL(X) is labeled as accepted. Assume
that

c(x) ≥ 0 for any x ∈ Q\Ω0.

Then we have

w(X) ≥ w(Z).(34)
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Fig. 5. Four different configurations for Case 2.

Proof. We examine all the cases corresponding to a minimum in orthant I (see
Figure 4). The proof will be obtained by induction on the number of iterations of the
algorithm.

At the first step the result holds true by our initialization.
Let us consider the nth step of the algorithm. The induction hypothesis implies

that at the current iteration the values of nodes in the narrow band are greater than
values of nodes labeled as accepted. Therefore (33) holds true, so we can apply
Proposition 5.1. Our proof will be divided into three parts.

Case 1. w1, . . . , w8 are narrow band or far (before Z is labeled as accepted).
If Z belongs to orthant I, we have seen by Proposition 4.1 that

w(X) ≥ min
{
w1, w2, w3

}
= w(Z).

If Z does not belong to orthant I, we have

w(X) ≥ min
{
w1, w2, w3

}
≥ w(Z)

since Z as been labeled as accepted.
Case 2. One node w1, . . . , w8 is accepted (before Z is labeled as accepted).
Let us denote by P this node. When P was accepted the value at X was wold(X).

Now the value at X has to be recomputed. We can only have one of the following
situations:

1. P belongs to orthant I.
(a) Z belongs to orthant I

i. See Figure 5(a). By Proposition 5.1, Z and B cannot be assigned
to a lower value after P became accepted, so wnew(X) = wold(X)
and wold(X) ≥ w(Z) since Z is the node chosen to be labeled as
accepted.

ii. See Figure 5(b). When Z is accepted the minimum is attained at
P , and this implies again wnew(X) = wold(X).

(b) Z does not belong to orthant I
i. See Figure 5(c). In the iterations between the acceptance of P and

that of Z the values w(A) and w(B) cannot be changed. More-
over, the minimum is attained in orthant I so we have wnew(X) =
wold(X).

ii. See Figure 5(d). We know that the value w(A) has not been re-
placed, w(B) cannot be lower than w(P ), and the minimum is
attained in orthant I. Then the minimum is attained at P and
wnew(X) = wold(X).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1996 EMILIANO CRISTIANI AND MAURIZIO FALCONE

2. P does not belong to orthant I.
Since the minimum is attained in orthant I this means that P has no effect
on the computation at X and we are back to Case 1.

Case 3. More than one value among w1, . . . , w8 has been labeled as accepted
(before Z is labeled as accepted).

This case can be solved by the arguments in Case 2.
As for the FM-FD method (see [33]) we can now conclude that the value of the

node which is labeled as accepted at every iteration cannot be decreased if we iterate
the fixed point operator. In fact, let us denote this value wmin. Since all the nodes in
the narrow band have values greater than wmin, the previous result implies that using
those nodes we cannot assign to a node a value lower than wmin. In conclusion, the
up-winding is respected and the value wmin can be considered exact since it cannot be
improved on the same grid (of course it can be improved if we reduce the discretization
steps).

Remark 5.2. The FM-SL scheme does not require a stability CFL-like condition,
as required by the FM-FD scheme.

5.1. Convergence to the viscosity solution and conclusions. The semi-
Lagrangian scheme is consistent, as has been proved, e.g., in [16]. Moreover, choosing
Δx = Δy, we get that the local truncation error is O(Δx).

We will prove that the solution computed by the FM-SL method is identical to the
solution computed by the standard semi-Lagrangian scheme where the computation
is repeated on every node of the grid until convergence. Naturally, if the two schemes
compute the same values, convergence of the FM-SL method to the viscosity solution
is just a consequence of that of the standard semi-Lagrangian scheme.

Theorem 1. Let (Vi)i=1,...,N be the matrix containing the final values on the
n-dimensional grid and let

Vi = F (Vi−k, . . . , Vi+l)(35)

be the iteration corresponding to the numerical scheme. Let V̂ be the matrix of the
approximate solution corresponding to the fixed point iteration (35) and let V be the
matrix containing the final values of the approximate solution corresponding to the
fast marching technique applied to the same scheme (i.e., the result obtained when the

narrow band is empty). Then V = V̂ .
Proof. The two matrices coincide if and only if

V i = F (V i−k, . . . , V i+l) for any i = 1, . . . , N.(36)

Assume the narrow band is empty and take V as initial guess for the fixed point
technique; this will not change the solution since the value is computed by the same
scheme. When all the nodes are accepted the equality (36) must hold for every i.
In fact, if the equality is not true at one node, then its value can still be improved,
implying that the list of narrow band or far nodes is not empty, which gives us a
contradiction.

The above results allow us to draw some conclusions about the order of complexity
of the FM-SL scheme. The values w(X) computed by (26) are an approximation of
v(X), which has been computed at most 5 times for every nodes. This means that
the computational cost can be estimated as in the FM-FD scheme. One component is
given by the cost of the heap-sort method to select the minimum value in the narrow
band, and the other component is given by the computational cost at every node.
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This globally gives a cost O(N log(Nnb)), where N is the total number of nodes and
Nnb the number of nodes in the narrow band (see [33]).

Since the values which have been labeled as accepted at every iteration cannot be
improved by the global fixed point iteration, i.e., they coincide with the same values
obtained by the global fixed point operator, the a priori error estimates in [12] are
still valid for the solution obtained by the FM-SL method. In the last section we will
present several tests which confirm these theoretical results.

Boundary conditions on ∂Q. We define outside Q a strip of ghost nodes where
we set w = 1. If they enter the narrow band, at the end of the iteration, their value
is set back to w = 1 to avoid their contributing to the computation of other internal
nodes. When the minimal value on the nodes of the narrow band is 1, the ghost nodes
will be the only nonaccepted nodes and we can stop the computation. In general, any
constant larger than the maximum of the solution in Q can be used to assign the
value at the ghost nodes (a typical choice is to set the solution to +∞ if there is no
a priori estimate on the solution).

Note that in our case, the normal velocity has always the same (positive) sign,
so in the case of a constant velocity the front propagation starting from Γ0 ⊂ Q will
hit the boundary of Q and both T and w are increasing approaching ∂Q. The values
computed by the algorithm on the nodes of the boundary will always be lower than 1,
and the choice of the above boundary condition is then well adapted to this situation.
However, when c is variable or when there are obstacles in the domain we can also
have a different situation: the front propagates more rapidly in some directions, and
this could require enlarging the domain to get a correct solution to our problem.
Finally, let us observe that the use of homogeneous Neumann boundary conditions is
less appealing because it strongly affects the fronts near the boundary because all the
level curves must be orthogonal to the boundary to satisfy ∇v(x) · η(x) = 0 for any
x ∈ ∂Q (here η(x) denotes the exterior normal to Q).

6. Other fast schemes. As some authors have remarked, it is possible to
improve the finite difference method. In the paper by Tsitsiklis [38] one can find
an algorithm which can be parallelized directly with a complexity O(N). There are
at least two ways to accelerate convergence and/or reduce the CPU time:

1. Reduce the computational effort for the minimum search by accepting more
than one node in the narrow band at every iteration (group marching method).

2. Avoid searching for the minimum value in the narrow band (fast sweeping
method), obtaining convergence in more than one iteration.

We will briefly illustrate these two techniques.

Group marching. The group marching (GM) method has been introduced by
Kim [22] to solve the eikonal equation on a structured grid by a discretization as that
of FM-FD. Although we do not compare this algorithm with the others studied in the
previous section, we will give a brief presentation of its main features for completeness.
Let us denote by Γ the set of nodes belonging to the narrow band, and let us choose
Δx = Δy. Define

TΓ,min = min{Ti,j | (xi, yj) ∈ Γ} and cΓ,max = max{ci,j | (xi, yj) ∈ Γ}.

The GM method labels as accepted, all at once, the nodes belonging to the set G
defined by

G :=

{
(xi, yj) ∈ Γ : Ti,j ≤ TΓ,min +

Δx√
2

1

cΓ,max

}
.(37)
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At every iteration the update of the narrow band is obtained as in the FM-FD method,
including the four neighbors of every node that have been labeled as accepted. It
is clear that if the set G is large, the GM method can be much faster than the
FM-FD method because more than one node at a time in accepted. On the other
hand, it is rather difficult to give an estimate of the acceleration parameter since the
cardinality of G depends on the values {Ti,j : (xi, yj) ∈ Γ} and on the velocity of
propagation. It could be that G = {TΓ,min}, and this would imply a computational
cost of O(N ln(Nnb)) instead of getting O(N), as one would expect by some tests
in [22].

Fast sweeping. The fast sweeping (FS) method is based on an idea first in-
troduced in [11] and was extensively analyzed in [39] and [37]. The crucial idea is
that the algorithm sweeps the whole (two-dimensional) domain with four alternating
orderings repeatedly,

(1) i = 1, . . . , N , j = 1, . . . ,M ; (2) i = N, . . . , 1 , j = 1, . . . ,M ;(38)

(3) i = N, . . . , 1 , j = M, . . . , 1; (4) i = 1, . . . , N , j = M, . . . , 1(39)

(where N and M are the number of nodes in each dimension), and it updates the
value at a grid point only if the new value is smaller than the current one. This idea
can be easily extended to n-dimensional domains.

Computing the values in this special ordering, the algorithm is able to follow
simultaneously a family of characteristics in a certain direction. As proved in [39],
the FS method converges in 2n iterations, where n is the dimension of the problem if
the initial front Γ0 is just a point on the grid and the function c is constant. If those
assumptions do not hold, the FS method has been shown to be of complexity O(N)
and to converge in a finite number of iterations although the bound for the number of
iterations is not explicitly written out. See [27] for an extension on triangular meshes
and an upper bound to the number of iterations needed by the FS method to reach
convergence.

Let us note that the discretization used in [39] is the same as that used in the FM-
FD method described in section 2, and that in any case the numerical evidence shows
that the convergence is more rapid with respect to the classical iterative method.

The FS method has an easy extension to the semi-Lagrangian case. In fact,
we can easily substitute the finite difference discretization by the semi-Lagrangian
discretization maintaining the ordering in which nodes are visited. Obviously, we
expect that at least in the case c(x) ≡ const. the FS semi-Lagrangian scheme (FS-SL)
can compute in four iterations exactly the same solution as FM-SL.

In the next section we run this algorithm in the case c(x) ≡ 1 with two different
initial fronts and see that this intuition is actually true.

7. Numerical experiments. In this section we present some numerical experi-
ments performed with MATLAB 7 on a PC equipped with a Pentium IV 2.80 GHz
processor, 512 MB RAM.

The main goal is to compare the FM-FD method and the FM-SL method de-
scribed in previous sections. We also compare these methods with the semi-Lagrangian
iterative method and FS method based on a semi-Lagrangian discretization described
in section 6. First, two tests are devoted to approximate the solution of model prob-
lems where we know the exact solution, so we can compute the L∞ error and L1

error. Other tests are devoted to solving more complicated problems and applications
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Fig. 6. Level sets of T (x) computed by the FM-SL method, 51 × 51 grid.

in which the velocity function c(x) does not satisfy standard assumptions such as
Lipschitz continuity and boundedness.

If not specified otherwise, we choose Q = [−2, 2]2 as our computational domain.

7.1. Tests on model problems. In the following tests we compare the exact
solution T with the solution T̂ computed by the FM-FD method and the FM-SL
method described above. Note that in the implementation of the FM-SL algorithm
we have used the observation in Remark 5.1 to speed up the computation.

We compute

E∞,Δx = max
i,j

|Ti,j − T̂i,j | , E1,Δx = (Δx)2
∑
i,j

|Ti,j − T̂i,j |(40)

and the rate of convergence r in some model problems in R
2. We consider 51 × 51,

101×101, and 201×201 grids1 corresponding, respectively, to Δx = 0.08, Δx = 0.04,
and Δx = 0.02.

Since we know that there is a constant C such that

Ep,Δx ≤ CΔxr and Ep,Δx/2 ≤ C

(
Δx

2

)r

, p = 1,∞,

we obtain that the numerical rate of convergence is

r = log2

(
Ep,Δx

Ep,Δx/2

)
, p = 1,∞.

Moreover, we compare these algorithms with the classical iterative semi-Lagrangian

method in which we choose maxi,j |w(k)
i,j − w

(k−1)
i,j | < ε, ε = 10−7, as the stopping

criterion and with the FS-SL method performing just four iterations in different order.
Let us finally remark that in all cases condition (15) holds.

Test 1. Γ0 = (0, 0), c(x, y) ≡ 1. Exact solution: T (x, y) =
√

(x2 + y2).
Results are summarized in Figure 6 and Table 1. As expected, in all cases errors

reduce as Δx decreases. The numerical rate of convergence (Table 2) is in the interval
[0.5, 1] for both methods.

1In these grids there is a node corresponding to the point (0, 0).
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Table 1

Errors for Test 1.

Method Δx L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0875 0.7807 0.5

FM-SL 0.08 0.0329 0.3757 0.7

SL (46 it) 0.08 0.0329 0.3757 8.4

FS-SL 0.08 0.0329 0.3757 0.8

FM-FD 0.04 0.0526 0.4762 2.1

FM-SL 0.04 0.0204 0.2340 3.1

SL (86 it) 0.04 0.0204 0.2340 60

FS-SL 0.04 0.0204 0.2340 3.2

FM-FD 0.02 0.0309 0.2834 9.4

FM-SL 0.02 0.0122 0.1406 14

SL (162 it) 0.02 0.0122 0.1406 443.7

FS-SL 0.02 0.0122 0.1406 12.5

Table 2

Rate of convergence in L∞ and L1 norms computed by errors in Table 1.

Method L∞ (0.08 → 0.04) L∞ (0.04 → 0.02) L1 (0.08 → 0.04) L1 (0.04 → 0.02)

FM-FD 0.7342 0.7675 0.7132 0.7487

FM-SL 0.6895 0.7417 0.6831 0.7349

The FM-SL and semi-Lagrangian methods give exactly the same errors in accor-
dance with Theorem 1, and they are also equal to the errors of FS-SL, as expected,
since FS-SL converges in four iterations in the case c is constant. These errors number
about half that of the FM-FD method, although both are first order methods. This
is due to the fact that semi-Lagrangian discretization is able to follow every direction
of the characteristic flow.

Both methods based on the fast marching technique are dramatically faster than
the iterative semi-Lagrangian method. Nevertheless we want to note that only one
iteration of the iterative scheme is less expensive with respect to the single iteration
needed by fast marching–based algorithms. This is due to the fact that the narrow
band technique requires that we (1) compute a minimum over nodes in the narrow
band and (2) access the data in an almost random manner rather than in a systematic
way along the loop indices (see [22]). Finally we note that the CPU time needed by the
FM-SL method is slightly larger than the CPU time needed by the FM-FD method.
This due to the fact that (1) the narrow band is bigger in the first method; and
therefore the search for the minimum in the narrow band is more expensive; and (2)
in the FM-SL method we need to compute the minimum over the unit ball B(0, 1).

Test 2. Γ0 = unit square centered in (−1, 1) and rotated by 11.25◦ ∪ circle
with radius R = 0.5 centered in (0,−1) ∪ square with side 0.4 centered in (1.4, 1.4),
c(x, y) ≡ 1. Exact solution: T (x, y) = minimum between the distance function of the
square rotated, the circle, and the square.

Results are summarized in Figure 7 and Table 3. In this test the shape of the
initial front is much more complicated, but errors have the same behavior as in the
previous simple Test 1, although the difference between errors is smaller.
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Fig. 7. Level sets of T (x) computed by the FM-SL method, 101 × 101 grid.

Table 3

Errors for Test 2.

Method Δx L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0625 0.2154 0.5

FM-SL 0.08 0.0440 0.1849 0.7

SL (30 it) 0.08 0.0440 0.1849 4.9

FS-SL 0.08 0.0440 0.1849 0.7

FM-FD 0.04 0.0393 0.1120 2.2

FM-SL 0.04 0.0215 0.1044 3.1

SL (55 it) 0.04 0.0215 0.1044 34.1

FS-SL 0.04 0.0215 0.1044 2.9

FM-FD 0.02 0.0248 0.0669 10.2

FM-SL 0.02 0.0135 0.0633 14.5

SL (102 it) 0.02 0.0135 0.0633 246.6

FS-SL 0.02 0.0135 0.0633 11.4

Table 4

Rate of convergence in L∞ and L1 norms computed by errors in Table 3.

Method L∞ (0.08 → 0.04) L∞ (0.04 → 0.02) L1 (0.08 → 0.04) L1 (0.04 → 0.02)

FM-FD 0.6693 0.6642 0.9435 0.7434

FM-SL 1.0332 0.6714 0.8246 0.7218

FS-SL seems to be the best method. It has the smallest error and the CPU time is
slightly larger than that of FM-FD. This is probably due to the fact that the structure
of the narrow band is very complicated and is very large in terms of nodes.

Also in this case the rate of convergence (Table 4) is greater than 0.5.

7.2. Applications. In the following we try to use the FM-SL method in some
classical applications of the eikonal equation such as the minimum time problem and
shape-from-shading. We consider some cases not covered by the theory in which c(x, y)
is discontinuous, c(x, y) vanishes in some regions (state constraints), and c(x, y) has
infinite values. We also consider the anisotropic case in which the velocity field c
depends on (x, y) and on the control a. The results we obtained are very satisfactory
even in these cases.
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Fig. 8. Value function T (left) and level sets of T (right).
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Fig. 9. Value function T (left) and level sets of T with some optimal trajectories (right).

Test 3: Nonconstant velocity. Γ0 = ∂B(0, Δx
2 ), c(x, y) = |x+ y|. In this case

the velocity field is nonconstant. Figure 8 shows the value function T (x, y) and level
sets of T . On the line x = −y the solution T is not defined since its correct value is
T = +∞. The FS-SL method needs 12 iterations to reach convergence and is more
than three times slower than the FM-SL method on a 101 × 101 grid.

Test 4: Discontinuous vector field. Γ0 = (−1, 0).

c(x, y) =

{
0.4, (x, y) ∈ [0.5, 1] × [0, 0.5],

1 elsewhere.

In this case the velocity field is discontinuous. Figure 9 shows the value function
T (x, y) and level sets of T . Figure 9 (right) also shows some optimal trajectories
which start from four different points and reach the target Γ0 in the minimum time
with speed c(x, y). The FS-SL method converges in 8 iterations.

Test 5: State constraint problem. Γ0 = (−1,−1).

c(x, y) =

{
0, (x, y) ∈ ([0, 0.5] × [−2, 1.5]) ∪ ([1, 1.5] × [−1.5, 2]),

1 elsewhere.

In this test the velocity field vanishes in two different regions (the obstacles). Fig-
ure 10 shows the computational domain, the value function T (x, y), and level sets of
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Fig. 10. Domain of the equation (left), value function T (center), and level sets of T with one
optimal trajectory (right).
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Fig. 11. Domain of the equation (left) and value function T (right).

T . Figure 10 (right) also shows one optimal trajectory which starts from the point
(1.8, 1.5) and reaches Γ0 in the minimum time avoiding obstacles. We remark that
since we use the Kružkov transform and compute v, we do not need to modify the
numerical scheme to deal with state constraints. Also in this case the FS-SL method
converges in 8 iterations.

Test 6: Infinite velocity. Γ0,= (−1, 0).

c(x, y) =

{
+∞, x ≥ 1,

1 elsewhere.

In this case the front can propagate instantaneously in the region R = {x ≥ 1}. It
corresponds to the case of the following degenerate eikonal equation (see [30]):

|∇T (x, y)| = f(x, y) with f = 0 in R.

Figure 11 shows the computational domain and value function T (x, y). In this test
we used the technique described in section 3.2 in order to deal with this kind of vector
field.

This technique allows us to reconstruct a perfect flat surface on R as the theory
and the physical sense require. This technique can be very useful in shape-from-
shading problems.
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Fig. 12. Initial image (left) and reconstructed surface (right).
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Fig. 13. Domain of the equation (left), value function T (center), and level sets of T with some
optimal trajectories (right).

Test 7: Shape-from-shading. Q = [−1, 1]2, Γ0 = silhouette of a vase.

c(x, y) =

(√
1

I(x, y)2
− 1

)−1

, I(x, y) = intensity light function.

In this test we solve the shape-from-shading problem in the simple case of a vase.
Figure 12 (left) shows the initial image and Figure 12 (right) shows the reconstructed
surface. By the symmetry of the problem we guess that all characteristic curves
start from the right and left sides of the image, so we can impose Dirichlet boundary
condition just on the right and left sides of the domain and state constraints elsewhere
as in [10] (see also [29, 24], where different boundary conditions are applied).

Test 8: Poincaré model. Q = [−1, 1]2, Γ0 = (−0.65,−0.65).

c(x, y) =

{
1 − (x2 + y2) , x2 + y2 < 1,

0 elsewhere.

This example is an interesting application of the eikonal equation to the Poincaré
model of the hyperbolic geometry. Figure 13 shows the computational domain, the
value function T (x, y), and level sets of T . The FS-SL method converges in 8 itera-
tions.

As result of the particular choice of the velocity field (see [25]), the optimal
trajectories of the associated minimum time problem correspond to the hyperbolic
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Fig. 14. Level sets of T (left) and an optimal trajectory on the surface z (right).

straight lines. Moreover, the level sets of T are hyperbolic circles with center Γ0 (i.e.,
the sets of points which have the same hyperbolic distance from Γ0).

Test 9: Geodesics on a nonsmooth surface. Q = [−1.5, 1.5]2, Γ0 = (0,−0.6).

Surface : z(x, y) =

{
1 − (|x| + |y|) , |x| + |y| < 1,

0 elsewhere.

In this case we want to solve a minimum time problem on a surface z = z(x, y).
The three-dimensional problem can be easily reduced to a two-dimensional problem
modifying the velocity field according to the function z. In fact, if the intrinsic velocity
on the surface in equal to 1, it can be shown (see [32, 23]) that the velocity of the
corresponding two-dimensional problem becomes

c(x, y, a) =
1√

1 + (∇z · a)2
.

Figure 14 shows the level sets of T and the surface with an optimal trajectory on it.
The starting point is (0, 0.5).

We remark that the dependence of c on a changes the properties of the solution
of the equation. In fact the equation for anisotropic front propagation is⎧⎨⎩

v(x) + max
a∈B(0,1)

{c(x, a)a · ∇v(x)} = 1, x ∈ R
n\Ω0,

v(x) = 0, x ∈ ∂Ω0.
(41)

In this case the fast marching technique is no longer directly applicable (there is no
guarantee that convergence is reached in just one iteration; see [34]). This is true for
the FM-SL method too, but we stress that scheme (26) requires tiny modifications to
deal with this kind of velocity field. Moreover, if we use the function w computed by
the FM-SL method as a starting point of the iterative semi-Lagrangian scheme, we
can reach convergence in very few iterations.

Appendix. Convergence of the FM-FD method in a finite number of
steps.

Proof of Proposition 2.1. We will assume that B, C, and D are the neighbors
of X which can have a label accepted, narrow band, or far (see Figure 15). We will
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Fig. 15. The neighboring nodes of X.

prove the result by induction on the number of iterations of the algorithm. We will
always assume

T (B) ≤ T (D),(42)

which is not restrictive since we can always switch the B and D.
In the first iteration we simply have T (X) = 0 + fX and (16) is satisfied. Let

us consider the nth step of the algorithm. The induction hypothesis implies that at
each iteration the values of nodes in the narrow band are greater than values of nodes
labeled as accepted at the same iteration. Therefore, by construction we have that,
given two nodes Y and Z,

if Y has become accepted before Z, then T (Y ) ≤ T (Z).

The proof will be divided into four cases.
Case 1. B is far. C and D are narrow band or far.
By assumption T (B) = +∞, and since T (B) ≤ T (D) this implies that D must

be far. Moreover, we have

T (C) ≥ T (A)

since A has been chosen among all the nodes of the narrow band to become accepted.
Also X must be far, since it has never been computed. Then by (10) we get

T (X) = T (A) + fX .(43)

Since fX > 0, (43) implies

T (A) ≤ T (X) ≤ T (A) + fX .

Case 2. B is narrow band. C and D are narrow band or far.
Also in this case X is far. We have

T (A) ≤ T (B) , T (A) ≤ T (C)

since A is the minimal node in narrow band. Moreover, the assumption (42) implies
that T (X) will be computed by the values at A and B. From (10) we get

T (X) =
T (A) + T (B) +

√
2f2

X − (T (A) − T (B))
2

2
(44)

and then

T (X) ≥ T (A) + T (B)

2
≥ T (A) + T (A)

2
= T (A).(45)
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Since T (X) solves

(T (X) − T (A))2 + (T (X) − T (B))2 = f2
X

we have

(T (X) − T (A))2 ≤ f2
X .

Since all the terms in the above equation are positive we conclude that

T (X) − T (A) ≤ fX .(46)

Case 3. B is accepted. C and D are narrow band or far.
This situation occurs when X has been already computed once (when B has been

labeled as accepted). Let us denote its value by Told(X). The node X is then in the
narrow band and has to be recomputed because A has just been labeled as accepted.
Let us note that in the previous computation Told(X) has been computed according
to the rules examined in Case 1 or 2. Then we have

T (B) ≤ Told(X) ≤ T (B) + fX .

Moreover T (A) ≤ Told(X) because A just became accepted and T (B) ≤ T (A) since
B became accepted before A (induction).

These inequalities imply

T (B) ≤ T (A) ≤ Told(X) ≤ T (B) + fX(47)

and

0 ≤ T (A) − T (B) ≤ fX .(48)

The value at X, which will be denoted by Tnew(X), will depend on T (A) and T (B).
By (48) and (47) we derive

Tnew(X) =
T (A) + T (B) +

√
2f2

X − (T (A) − T (B))
2

2
(49)

≥ T (A) + (T (B) + fX)

2
≥ T (A) + T (A)

2
= T (A)

and

Tnew(X) ≤ T (A) + T (B) +
√

2fX
2

≤ T (A) +

√
2

2
fX ≤ T (A) + fX .

Case 4. B is narrow band or far. C is accepted. D is narrow band or far.
In this case X has already been computed because it is a neighbor of C. It belongs

to the narrow band and has a value Told(X). Besides

T (A) ≤ Told(X)(50)

since on the contrary X would have been chosen instead of A as the node to be
accepted and

T (A) ≤ T (B)(51)
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for the same reason. Moreover we have T (C) ≤ T (A) by induction and T (B) ≤ T (D)
by assumption. In conclusion, the nodes contributing to the computation of T (X)
are C and B or only C. The fact that A has been labeled as accepted has no effect
on the computation so we are again in Case 1 or 2. This implies,

T (C) ≤ Tnew(X) ≤ T (C) + fX ≤ T (A) + fX .

Now we prove that Tnew ≥ T (A). When Told(X) was computed the algorithm was in
the Case 1 or 2, so

T (C) ≤ Told(X) ≤ T (C) + fX .(52)

Moreover we have

T (C) ≤ T (B)(53)

by induction.
If T (B) > Told(X), then the node contributing to the computation of T (X) is

only C, so we have

Tnew(X) = T (C) + fX ≥ Told(X) ≥ T (A).

Otherwise, if T (B) ≤ Told(X), the nodes contributing to the computation of T (X)
are C and B.

Using this last assumption, (52), and (53) we have

T (C) ≤ T (B) ≤ Told(X) ≤ T (C) + fX ⇒ 0 ≤ T (B) − T (C) ≤ fX

⇒ (T (B) − T (C))2 ≤ f2
X .(54)

Moreover, by (50) and (52) we have

T (C) + fX ≥ T (A).(55)

Computation of X leads to

Tnew(X) =
T (C) + T (B) +

√
2f2

X − (T (C) − T (B))2

2

=
(T (C) + fX) − fX + T (B) +

√
2f2

X − (T (C) − T (B))2

2
.(56)

Using (55), (54), and (51) we obtain

Tnew(X) ≥ T (A) − fX + T (B) +
√

2f2
X − (T (C) − T (B))2

2

≥ T (A) − fX + T (B) +
√
f2
X

2
≥ T (A) + T (A)

2
= T (A).(57)

Finally, let us remark that the cases when two or more nodes among B, C, and
D are accepted can be treated as in the previous cases. Note that if D is accepted,
then B must also be accepted since T (B) ≤ T (D).

To complete the proof, it is necessary to show that the expression appearing
under the square root in the computation of T (X) expressed as a function of its two
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Fig. 16. Proof that radicand is positive under the CFL-like condition (15).

neighbors is nonnegative. Let us start by proving that the hypothesis (15) guarantees
that

c(Z)

c(Z ′)
≤

√
2(58)

for any couple of nodes Z and Z ′ such that

|Z − Z ′| = Δx.

In fact, by assumption we have

|c(Z) − c(Z ′)| ≤ Lc|Z − Z ′|.

If |Z − Z ′| = Δx, we have that

|c(Z) − c(Z ′)| ≤ LcΔx ≤ (
√

2 − 1)cmin ≤ (
√

2 − 1)c(Z ′),

which implies

c(Z) − c(Z ′) ≤ (
√

2 − 1)c(Z ′)

and then

c(Z) ≤
√

2 c(Z ′).

Let us examine the three cases where we need to show that the radicand is nonnegative.
Case 2. Since B is in the narrow band, there must be at least one neighbor

belonging to accepted. Let E be this node (see Figures 16 and 1). Moreover, T (A) ≤
T (B) since A has been chosen to be labeled as accepted and T (E) ≤ T (A) because E
became accepted before A. By the previous results, we get

T (E) ≤ T (B) ≤ T (E) + fB ,

which implies

T (A) ≤ T (B) ≤ T (E) + fB ≤ T (A) + fB

and

0 ≤ T (B) − T (A) ≤ fB .(59)
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Choosing Z = X and Z ′ = B in (58), we get

c(X)

c(B)
≤

√
2

and then
√

2fX ≥ fB .(60)

Finally (59) and (60) imply
√

2fX ≥ T (B) − T (A) ≥ 0,

so we can conclude that

2f2
X − (T (B) − T (A))2 ≥ 0.

Case 3 and 4. In these cases, (48) and (54) guarantee, respectively, that the
expression appearing under the radicand is always positive.

Let us show now that the value at the node which is labeled as accepted at every
iteration is exact. Let us denote this value by Tmin. Since all the nodes in the
narrow band have values greater than Tmin, the previous result implies that using
those nodes we cannot assign to a node a value lower than Tmin. In conclusion (see
[33]), the up-winding is respected and the value Tmin can be considered exact since it
cannot be improved on the same grid (of course it can be improved if we reduce the
discretization steps).

Note that Theorem 1 is valid also for the FM-FD method.
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on the FM-FD and FM-SL methods.

REFERENCES

[1] S. Augoula and R. Abgrall, High order numerical discretization for Hamilton-Jacobi equa-
tions on triangular meshes, J. Sci. Comput., 15 (2000), pp. 197–229.

[2] M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser, Boston, 1997.
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