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INVISIBLE CONTROL OF SELF-ORGANIZING AGENTS
LEAVING UNKNOWN ENVIRONMENTS∗

GIACOMO ALBI† , MATTIA BONGINI† , EMILIANO CRISTIANI‡ , AND DANTE KALISE§

Abstract. In this paper we are concerned with multiscale modeling, control, and simulation
of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on
crowds. We first introduce a new microscopic model characterized by an exploration phase and an
evacuation phase. The main ingredients of the model are an alignment term, accounting for the
herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore
the environment under limited visibility. We consider both metrical and topological interactions.
Moreover, a few special agents, the leaders, not recognized as such by the crowd, are “hidden” in
the crowd with a special controlled dynamic. Next, relying on a Boltzmann approach, we derive a
mesoscopic model for a continuum density of followers, coupled with a microscopic description for
the leaders’ dynamics. Finally, optimal control of the crowd is studied. It is assumed that leaders
aim at steering the crowd towards the exits so to ease the evacuation and limit clogging effects, and
locally optimal behavior of leaders is computed. Numerical simulations show the efficiency of the
control techniques in both microscopic and mesoscopic settings. We also perform a real experiment
with people to study the feasibility of such a bottom-up control technique.
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1. Introduction. Self-organizing systems are not as mysterious as they were
when researchers began to deal with them. A number of local interaction rules were
identified, such as repulsion, attraction, alignment, self-propulsion, etc., and the large-
scale outcome triggered by the combination of them is so far sufficiently understood
[54]. Researchers have also achieved a certain knowledge regarding the control of self-
organizing systems, namely the methods to dictate a target behavior to the agents
still keeping the local rules active all the time.

In this paper we are concerned with multiscale modeling, control, and simulations
of self-organizing agents which leave an unknown area. Agents are not informed about
the positions of the exits, so they need to explore the environment first. Agents are
assumed not to communicate with each other and they cannot share information
directly. Moreover, they are selfish and do not intend to help the other agents.

The guiding application is that of a human crowd leaving an unknown environ-
ment under limited visibility. In that case, we claim that people exhibit two opposite
tendencies: on the one hand, they tend to spread out in order to explore the environ-
ment efficiently, and on the other hand, they follow the group mates in the hope that
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they have already found a way out (herding effect). Controlling these natural behav-
iors is not easy, especially in emergency or panic situations. Typically, the emergency
management actors (e.g., police, stewards) adopt a top-down approach: they receive
information about the current situation, update the evacuation strategies, and finally
inform people communicating directives. It is useful to stress here that this approach
can be very inefficient in large environments (where communications to people are dif-
ficult) and in panic situations (since “instinctive” behavior prevails over the rational
one). Let us also mention that in some cases people are simply not prone to follow
authority’s directives because they are opposing it (e.g., in public demonstrations).

In this paper we explore the possibility of controlling crowds adopting a bottom-up
approach. Control is obtained by means of special agents (leaders) who are hidden
in the crowd, and they are not recognized by the mass as special. From the modeling
point of view, this is translated by the fact that the individuals of the crowd (followers)
interact in the same way with both the other crowd mates and the leaders.

Goals. We first introduce a new microscopic (agent-based) model characterized
by an exploration phase and an evacuation phase. This is achieved by a combination
of repulsion, alignment, self-propulsion, and random (social) force, together with the
introduction of an exit’s visibility area. We also consider both metrical and topological
interactions so to avoid unnatural all-to-all interactions. A few leaders, not recognized
as such by the crowd, are added to the model with a special, controlled dynamics.

Second, relying on a Boltzmann approach, we derive a mesoscopic model for a
continuum density of followers, coupled with a microscopic description for the leaders’
dynamics. This procedure, based on a binary interaction approximation, shows that,
in a grazing collision regime, the microscopic-kinetic limit system is the mesoscopic
description of the original microscopic dynamics.

Finally, dynamic optimization procedures with short- and long-time horizon are
considered. It is assumed that leaders aim at steering the crowd toward the exits so
to ease the evacuation and limit clogging effects. The goal is achieved by exploiting
the herding effect. Locally optimal behavior of leaders is computed by means of
two methods: the model predictive control and a modified compass search. Several
numerical simulations show the efficiency of the optimization methods in both the
microscopic and mesoscopic settings.

Beside numerical simulations, we performed a real experiment with people to
study the feasibility of the proposed bottom-up crowd control technique.

Relevant literature. This paper falls in several crossing, and often independent,
lines of research. Concerning pedestrian modeling, virtually any kind of model has
been investigated so far and several reviews and books are available. For a quick
introduction, we refer the reader to the reviews [9, 42] and the books [29, 44]. Some
papers deal specifically with evacuation problems: a very good source of references
is the paper [1], where evacuation models both with and without optimal planning
search are discussed. The paper [1] itself proposes a cellular automata model coupled
with a genetic algorithm to find a top-down optimal evacuation plan. Evacuation
problems were studied by means of lattice models [23, 37], social force models [49],
cellular automata models [1, 56], mesoscopic models [2], and macroscopic models [21].
Limited visibility issues were considered in [21, 23, 37]. A real experiment involving
people can be found in [37].

The control of self-organizing agents can be achieved in several ways. For example,
the dynamics of all agents can be controlled by means of a single control variable,
which remains active at all times [3]. This kind of control is suitable, e.g., to model
the influence of television on people. Alternatively, every agent can be controlled by an
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independent control variable. This is the most effective but also the most “expensive”
control technique because of the large number of interactions with the agents that is
required [13]. A more parsimonious control technique, called sparse control, can be
obtained by penalizing the number of these interventions by means of an L1 control
cost, so that the control is active only on few agents at every instant [11, 12, 18].
If the existing behavioral rules of the agents cannot be redesigned, the control of
the system can be obtained by means of external agents. Here the literature splits
into two branches: the case of recognizable leaders, characterized by the fact that the
external agents have an influence on normal agents stronger than the influence exerted
by group mates (like, e.g., a celebrity) [6, 15, 32, 47]; and the case of invisible leaders,
which are instead characterized by the fact that the external agents are completely
anonymous and are perceived as normal group mates [26, 31, 40, 41]. Alternative
approaches, based on the control of the surrounding environment rather than of the
agents themselves, are proposed in [27, 30, 43].

Let us focus on the invisible control, also known as soft control. In the seminal
paper [26] a repulsion-alignment-attraction model is considered, for which the authors
show that a little percentage of informed agents pointing towards a target is sufficient
to steer the whole system to it. The papers [40, 41] deal with a Vicsek-like (pure
alignment) model with a single leader. A feedback control for the leader is proposed,
which is able to align the whole group along a desired direction from any initial
condition. Invisible control was successfully implemented in real experiments involving
animals, where leaders come in the form of disguised robots; see, e.g., [39], which deals
with cockroaches and [16], which deals with zebrafishes.

The complexity reduction of microscopic models when the number of interacting
agents is large has received deep interest in the last few years. The main technique
to address the curse of dimensionality is to recast the original microscopic dynamics
in the form of a PDE, by substituting the influence that the entire population has
on a single agent with an averaged one. Several approaches have been used to derive
rigorously this procedure, like the BBGKY hierarchy [38], the mean-field limit [10, 17],
or the binary interaction approximation [4, 48]. Furthermore, only recently has this
problem been investigated for optimal control of multiagent systems [36].

In the case of the control by means of external agents, if the number of leaders
is relatively small in comparison to the crowd of followers, it might be convenient
to apply the above dimension reduction techniques to the followers’ population only
[14, 35]. The resulting modeling setting is described by a coupled ODE-PDE sys-
tem, where we control the microscopic dynamics in order to steer the macroscopic
quantities. Nonetheless, from the computational point of view, one has to face the
numerical tractability of the optimal control problem, whose solution requires the iter-
ated evaluation of the macroscopic system. Since the underling dynamics are typically
nonlinear and imply the resolution of high-dimensional integro-differential terms, ad
hoc approaches have to be developed in order to avoid time-consuming strategies.
One possibility is to use a fixed dynamics for the system of ODEs, assigned by the
modelers or as feedback control derived by a properly designed functional; see, e.g.,
[5, 24].

Paper organization. This paper is organized as follows. In section 2 we introduce
the main features of the model, valid at any scale of observation. In section 3 we
present in detail the model at the microscopic scale. In section 4 we derive the
associated Boltzmann-type equation and the coupled ODE (micro)—PDE (kinetic)
model by means of the grazing collision limit, following the path laid out in [50].
In section 5 we introduce the control and optimization problem and in section 6
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we show the results of the numerical tests. In section 7 we report the results of
a real experiment with pedestrians aimed at validating the proposed crowd control
technique. We conclude the paper sketching some research perspectives.

2. Model guidelines. In this section we describe the model at a general level.
Hereafter, we divide the population between leaders, which are the controllers and
behave in some optimal way (to be defined), and followers, which represent the mass
of agents to be controlled. Followers cannot distinguish between followers and leaders.

First- versus second-order model. One can notice that walking people, animals,
and robots are in general able to adjust their velocity almost instantaneously, reduc-
ing to a negligible duration the acceleration/deceleration phase. For this reason, a
second-order (inertia-based) framework does not appear to be the most natural set-
ting. However, if we include in the model the tendency of the agents to move together
and to align with group mates we implicitly assume that agents can perceive the ve-
locity of the others. This makes unavoidable the use of a second-order model, where
both positions and velocities are state variables. See [29, sect. 4.2] for a general dis-
cussion on this point. In our model we adopt a mixed approach, describing leaders by
a first-order model (since they do not need to align) and followers by a second-order
one. In the latter case, the small inertia is obtained by means of a fast relaxation
towards the target velocity.

Metrical versus topological interactions. Interaction of one agent with group mates
is said to be metrical if it involves only mates within a predefined sensory region, re-
gardless of the number of individuals which actually fall in it. Interaction is instead
said to be topological if it involves a predefined number of group mates regardless
of their distance from the considered agent. Again, in our model we adopt a mixed
approach, assuming short-range interactions to be metrical and long-range ones to be
topological.

Isotropic versus anisotropic interactions. Living agents (people, animals) are gen-
erally asymmetric, in the sense that they better perceive stimuli coming from their
“front”, rather than their “back”. In pedestrian models, e.g., interactions are usu-
ally restricted to the half-space in front of the person, since the human visual field
is approximately 180◦. Nevertheless, humans can easily see all around them by sim-
ply turning their head. In the case we are interested in, people have no idea of the
location of their target; hence we expect that they often look around to explore the
environment and see the behavior of the others. This is why we prefer to adhere to
isotropic interactions.

Let us describe the social forces acting on the agents.
Leaders.
• Leaders are subject to an isotropic metrical short-range repulsion force di-

rected against all the others, translating the fact that they want to avoid
collisions and that a maximal density exists.

• Leaders are assumed to know the environment and the self-organizing features
of the crowd. They respond to an optimal force which is the result of an offline
optimization procedure, defined as to minimizing some cost functional (see
section 5).

Followers.
• Similarly to leaders, followers respond to an isotropic metrical short-range

repulsion force directed against all the others.
• Followers tend to a desired velocity which corresponds to the velocity the

would follow if they were alone in the domain. This term takes into account
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the fact that the environment is unknown. Followers describe a random walk
if the exit is not visible (exploration phase) or a sharp motion toward the
exit if the exit is visible (evacuation phase). In addition, we include a self-
propulsion term which translates the tendency to reach a given characteristic
speed (modulus of the velocity).

• If the exit is not visible, followers are subject to an isotropic topological
alignment force with all the others, i.e., they tend to have the same velocity
of the group mates. Assuming that the agents’ positions are close enough,
this corresponds to the tendency to go where group mates go (herding effect).

3. The microscopic model. In this section we introduce the microscopic model
for followers and leaders. We denote by d the dimension of the space in which the
motion takes place (typically d = 2), by Nf the number of followers, and by N l � Nf

the number of leaders. We also denote by Ω ≡ Rd the walking area and by xτ ∈ Ω
the target point. To define the target’s visibility area, we consider the set Σ, with
xτ ∈ Σ ⊂ Ω, and we assume that the target is completely visible from any point
belonging to Σ and completely invisible from any point belonging to Ω\Σ.

For every i = 1, . . . , Nf, let (xi(t), vi(t)) ∈ R2d denote position and velocity of
the agents belonging to the population of followers at time t ≥ 0 and, for every
k = 1, . . . , N l, let (yk(t), wk(t)) ∈ R2d denote position and velocity of the agents
among the population of leaders at time t ≥ 0. Let us also define x := (x1, . . . , xNf)
and y := (y1, . . . , yNl).

Finally, let us denote by Br(x) the ball of radius r > 0 centered at x ∈ Ω, by
BN (x; x,y) the minimal ball centered at x encompassing at least N agents, and by
N ∗ the actual number of agents in BN (x; x,y). Note that N ∗ ≥ N .

Remark 3.1. The computation of BN (x; x,y) requires the knowledge of the po-
sitions of all the agents, since all the distances |xi − x|, i = 1, . . . , Nf, and |yk − x|,
k = 1, . . . , N l, must be evaluated in order to find the N closest agents to x.

The microscopic dynamics described by the two populations is given by the fol-
lowing set of ODEs: for i = 1, . . . , Nf and k = 1, . . . , N l,
(3.1)

ẋi = vi,

v̇i = A(xi, vi) +
∑Nf

j=1H
f(xi, vi, xj , vj ; x,y) +

∑Nl

`=1H
l(xi, vi, y`, w`; x,y),

ẏk = wk =
∑Nf

j=1K
f(yk, xj) +

∑Nl

`=1K
l(yk, y`) + uk.

We assume the following:
• A is a self-propulsion term, given by the relaxation toward a random direction

or the relaxation toward a unit vector pointing to the target (the choice
depends on the position), plus a term which translates the tendency to reach
a given characteristic speed s ≥ 0 (modulus of the velocity), i.e.,

A(x, v) := θ(x)Cz(z − v) + (1− θ(x))Cτ

(
xτ − x
|xτ − x|

− v
)

+ Cs(s
2 − |v|2)v,

(3.2)

where θ : Rd → [0, 1] is the characteristic function of Ω\Σ, θ(x) = χΩ\Σ(x), z
is a d-dimensional random vector with normal distribution N (0, σ2), and Cz,
Cτ , Cs are positive constants.
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• The interactions follower-follower and follower-leader coincide and are equal
to
(3.3)

Hf(x, v, x′, v′; x,y) := −Cf
rRγ,r(x, x

′) + θ(x)
Ca
N ∗

(v′ − v)χBN (x;x,y)(x
′),

Hl(x, v, y, w; x,y) := Hf(x, v, y, w; x,y)

for given positive constants Cf
r , Ca, r, and γ, and

Rγ,r(x, x
′) =

{
e−|x

′−x|γ x′−x
|x′−x| if x′ ∈ Br(x)\{x},

0 otherwise,

models a (metrical) repulsive force, while the second term accounts for the
(topological) alignment force, which vanishes inside Σ. Note that, once the
summations over the agents

∑
j H

f and
∑
`H

l are done, the alignment term
models the tendency of the followers to relax toward the average velocity of the
N closer agents. With the choice Hf ≡ Hl the leaders are not recognized by
the followers as special. This feature opens a wide range of new applications,
including the control of crowds not prone to follow authority’s directives.

• The interactions leader-follower and leader-leader reduce to a mere (metrical)
repulsion, i.e., Kf = Kl = −Cl

rRζ,r, where Cl
r > 0 and ζ > 0 are in general

different from Cf
r and γ, respectively. Note that here the repulsion force is

interpreted as a velocity field, while for followers it is an acceleration field.
• uk : R+ → RdNl

is the control variable, to be chosen in a set of admissible
control functions.

Remark 3.2. The behavior of the leaders is entirely encapsulated in the control
term u but for a short-range repulsion force. The latter should be indeed interpreted
as a force due to the presence of the others, thereby noncontrollable.

4. Formal derivation of a Boltzmann-type equation. As already men-
tioned, our main interest in (3.1) lies in the case N l � Nf; that is, the population
of followers exceeds by far the one of leaders. When Nf is very large, a microscopic
description of both populations is no longer a viable option. We thus consider the
evolution of the distribution of followers at time t ≥ 0, denoted by f(t, x, v), together
with the microscopic equations for the leaders (whose number is still small). To this
end, we denote with mf the total mass of followers, i.e.,

mf(t) =

∫
R2d

f(t, x, v) dx dv,

which we shall eventually require to be equal to Nf. We introduce, for symmetry
reasons, the distribution of leaders g and their total mass

(4.1) g(t, x, v) =

Nl∑
k=1

δ(yk(t),wk(t))(x, v), ml(t) =

∫
R2d

g(t, x, v) dx dv = N l.

The evolution of f can be then described by a Boltzmann-type dynamic, derived
from the above instantaneous control formulation, which is obtained by analyzing the
binary interactions between a follower and another follower and the same follower
with a leader. The application of standard methods of binary interactions (see [22])
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shall yield a mesoscopic model for the distribution of followers, to be coupled with
the previously presented ODE dynamics for leaders.

To derive the Boltzmann-type dynamics, we assume that, before interacting, each
agent has at his disposal the values x and y that he needs in order to perform its
movement: hence, in a binary interaction between two followers with state parameters
(x, v) and (x̂, v̂), the value of Hf(x, v, x̂, v̂; x,y) does not depend on x and y. In the
case of Hf of the form (3.3), this means that the ball BN (x; x,y) and the value of
N ∗ have been already computed before interacting.

Moreover, since we are considering the distributions f and g of followers and
leaders, respectively, the vectors x and y are derived from f and g by means of the
first marginals of f and g, π1f and π1g, respectively, which give the spatial variables of
those distributions. Hence, since no confusion arises, we write Hf(x, v, x̂, v̂;π1f, π1g)
in place of Hf(x, v, x̂, v̂; x,y) to stress the dependence of this term on f and g.

We thus consider two followers with state parameters (x, v) and (x̂, v̂), respec-
tively, and we describe the evolution of their velocities after the interaction according
to {

v∗ = v + ηf [θ(x)Czξ + S(x, v) +mfHf(x, v, x̂, v̂;π1f, π1g)] ,

v̂∗ = v̂ + ηf
[
θ(x̂)Cz ξ̂ + S(x̂, v̂) +mfHf(x̂, v̂, x, v;π1f, π1g)

]
,

(4.2)

where ηf is the strength of interaction among followers, ξ, ξ̂ are random variables
whose entries are independently and identically distributed following a normal dis-
tribution with mean 0, variance ς2 (which shall be related to the variance σ2 of the
random vector z in (3.2) in such a way that we recover from (4.2) a Fokker–Planck-
type dynamic for f), taking values in a set B, and S is defined as the deterministic
part of the self-propulsion term (3.2),

S(x, v) = −θ(x)Czv + (1− θ(x))Cτ

(
xτ − x
|xτ − x|

− v
)

+ Cs(s
2 − |v|2)v.(4.3)

We then consider the same follower as before with state parameters (x, v) and a leader
agent (x̃, ṽ); in this case the modified velocities satisfy{

v∗∗ = v + ηlmlHl(x, v, x̃, ṽ;π1f, π1g),
ṽ∗ = ṽ,

(4.4)

where ηl is the strength of the interaction between followers and leaders. Note that
(4.4) accounts for only the change of the followers’ velocities, since leaders are not
evolving via binary interactions.

Since we are interested in studying the problem in the widest possible framework,
and avoid sticking only to the previous choice of the functions S, Hf, and Hl, in what
follows we assume that

(Inv) the systems (4.2) and (4.4) constitute invertible changes of variables from
(v, v̂) to (v∗, v̂∗) and from (v, ṽ) to (v∗∗, ṽ∗), respectively.

The time evolution of f is then given by a balance between bilinear gain and loss
of space and velocity terms according to the two binary interactions (4.2) and (4.4),
quantitatively described by the following Boltzmann-type equation:

∂tf + v · ∇xf = λfQ(f, f) + λlQ(f, g),(4.5)

where λf and λl stand for the interaction frequencies among followers and between
followers and leaders, respectively. The interaction integrals Q(f, f) and Q(f, g) are
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defined as

Q(f, f)(t) = E
(∫

R4d

(
1

Jf
f(t, x∗, v∗)f(t, x̂∗, v̂∗)− f(t, x, v)f(t, x̂, v̂)

)
dx̂ dv̂

)
,

Q(f, g)(t) = E
(∫

R4d

(
1

Jl
f(t, x∗∗, v∗∗)g(t, x̃∗, ṽ∗)− f(t, x, v)g(t, x̃, ṽ)

)
dx̃ dṽ

)
,

where the couples (x∗, v∗) and (x̂∗, v̂∗) are the preinteraction states that generate
(x, v) and (x̂, v̂) via (4.2), and Jf is the Jacobian of the change of variables given by
(4.2) (well-defined by (Inv)). Similarly, (x∗∗, v∗∗) and (x̃∗, ṽ∗) are the preinteraction
states that generate (x, v) and (x̃, ṽ) via (4.4), and Jl is the Jacobian of the change
of variables given by (4.4). Moreover, the expected value E is computed with respect
to (w.r.t.) ξ ∈ B.

In what follows, for the sake of compactness, we shall omit the time dependency
of f and g, and hence of Q(f, f) and Q(f, g), too.

Remark 4.1. If we would have opted for a description of agents as hard-sphere
particles, the arising Boltzmann equation (4.5) would be of Enskog type; see [51].
The relationship between the hard- and soft-sphere descriptions (i.e., where repulsive
forces are considered, instead) has been deeply discussed, for instance, in [7]. In our
model, the repulsive force Rγ,r is not singular at the origin for computational reasons;
therefore, the parameters γ and r have to be chosen properly to avoid arbitrary high
density concentrations.

4.1. Notation and basic definitions. We shall start the analysis of (4.5) by

fixing some notation and terminology. First of all, for any β ∈ Nd we set |β| =
∑d
i=1 βi,

and for any function h ∈ Cp(Rd×Rd,R), with p ≥ 0 and any β ∈ Nd such that |β| ≤ p,
we define for every (x, v) ∈ Rd × Rd,

∂βv h(x, v) :=
∂|β|h

∂β1v1 · · · ∂βdvd
(x, v),

with the convention that if β = (0, . . . , 0), then ∂βv h(x, v) := h(x, v).

Definition 4.2 (test functions). We denote by Tδ the set of compactly supported
functions ϕ from R2d to R such that for any multi-index β ∈ Nd we have the following:

1. if |β| < 2, then ∂βvϕ(x, ·) is continuous for every x ∈ Rd;
2. if |β| = 2, then there exists M > 0 such that

(a) ∂βvϕ(x, ·) is uniformly Hölder continuous of order δ for every x ∈ Rd
with Hölder bound M ; that is, for every x ∈ Rd and for every v, w ∈ Rd,
it holds that ∥∥∂βvϕ(x, v)− ∂βvϕ(x,w)

∥∥ ≤M ‖v − w‖δ ;

(b) ‖∂βvϕ(x, v)‖ ≤M for every (x, v) ∈ R2d.

Notice that C∞c (Rd × Rd;R) ⊆ Tδ for every 0 < δ ≤ 1.
Let M0(R2d) denote the set of measures taking values in R2d. For any two

functions f and ϕ from R2d to R for which the integral below is well-defined (in
particular, when f ∈M0(R2d) and ϕ ∈ Tδ), we set

〈f, ϕ〉 :=

∫
R2d

ϕ(x, v)f(x, v) dx dv.

Finally, we say that (f, y1, w1, . . . , yNl , wNl) ∈ M0(R2d)× R2dNl

is admissible if
the following quantities exist and are finite:
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(i)
∫
R2d S(x, v)f(x, v) dx dv,

(ii)
∫
R4d H

f(x, v, x̂, v̂;π1f,y)f(x, v)f(x̂, v̂) dx dv dx̂ dv̂,

(iii)
∑Nl

`=1

∫
R2d H

l(x, v, y`, w`;π1f,y)f(x, v) dx dv,

(iv)
∫
R2d K

f(yk, x)f(x, v) dx dv for every k = 1, . . . , N l,

(v)
∑Nl

`=1K
l(yk, y`) for every k = 1, . . . , N l.

Consequently, we introduce our definition of solution for the combined ODE-PDE
system for the dynamics of microscopic leaders and mesoscopic followers.

Definition 4.3. Fix T > 0, δ > 0, and u : [0, T ]→ RdNl

. By a δ-weak solution
of the initial value problem for the equation

∂tf + v · ∇xf = λfQ(f, f) + λlQ(f, g),

ẏk = wk =

∫
R2d

Kf(yk, x)f(x, v) dx dv +

Nl∑
`=1

Kl(yk, y`) + uk,
(4.6)

corresponding to the control u and the initial datum (f0, y0
1 , . . . , y

0
Nl) ∈ M0(R2d) ×

RdNl

in the interval [0, T ], we mean any (f, y1, . . . , yNl) ∈ L2([0, T ],M0(R2d)) ×
C1([0, T ],RdNl

) such that
1. f(0, x, v) = f0(x, v) for every (x, v) ∈ R2d;
2. the vector (f(t), y1(t), ẏ1(t), . . . , yNl(t), ẏNl(t)) is admissible for every t ∈

[0, T ];
3. there exists RT > 0 such that supp(f(t)) ⊂ BRT (0) for every t ∈ [0, T ];
4. mf(t) = Nf for every t ∈ [0, T ];
5. f satisfies the weak form of (4.5), i.e.,

∂

∂t
〈f, ϕ〉+ 〈f, v · ∇xϕ〉 = λf 〈Q(f, f), ϕ〉+ λl 〈Q(f, g), ϕ〉

for all t ∈ (0, T ] and all ϕ ∈ Tδ, where

〈Q(f, f), ϕ〉 = E
(∫

R4d

(ϕ(x, v∗)− ϕ(x, v)) f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
,

(4.7)

〈Q(f, g), ϕ〉 = E
(∫

R4d

(ϕ(x, v∗∗)− ϕ(x, v)) f(x, v)g(x̃, ṽ) dx dv dx̃ dṽ

)
,

(4.8)

and where v∗ and v∗∗ are given by (4.2) and (4.4), respectively;
6. for every k = 1, . . . , N l, yk satisfies in the Carathéodory sense

ẏk = wk =

∫
R2d

Kf(yk, x)f(x, v) dx dv +

Nl∑
`=1

Kl(yk, y`) + uk.

4.2. The grazing interaction limit. In order to obtain a more regular operator
than the Boltzmann operator in (4.5), we introduce the so-called grazing interaction
limit. This technique, analogous to the so-called grazing collision limit in plasma
physics, has been thoroughly studied in [55] and allows one, as pointed out in [48],
to pass the binary Boltzmann description introduced in the previous section to the
mean-field limit. This process, while somehow losing the microscopic interaction rules
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(4.2)–(4.4), allows a better understanding of the solution behavior for large times; see
[6, 50]. Moreover, the regularized operator of Fokker–Planck type will directly show
the connection with the microscopic model.

In what follows, we shall assume that our agents densely populate a small re-
gion but weakly interact with each other. Formally, we assume that the interaction
strengths ηf and ηl scale according to a parameter ε, the interaction frequencies λf

and λl scale as 1/ε, and we let ε → 0. In order to avoid losing the diffusion term in
the limit, we also scale the variance of the noise term ς2 as 1/ε. More precisely, we
set

(4.9) ηf = ε, ηl = ε, λf =
1

εmf
, λl =

1

εml
, ς2 =

σ2

ε
.

We now study the Boltzmann equation (4.5) to see whether simplifications may occur
under the above scaling assumptions.

Let us fix T > 0, δ > 0, ε > 0, a control u : [0, T ] → RdNl

, and an initial datum
(f0, y0

1 , . . . , y
0
Nl) ∈M0(R2d)×RdNl

. We consider a δ-weak solution (f, y1, . . . , yNl) of
system (4.6) with control u, initial datum (f0, y0

1 , . . . , y
0
Nl), and define g as in (4.1).

Let the scaling (4.9) hold for the chosen ε. Following the ideas in [20, 25], we can
expand ϕ(x, v∗) inside (4.7) in Taylor’ series of v∗ − v up to the second order, to get

〈Q(f, f), ϕ〉 = E

(∫
R4d

∇vϕ(x, v) · (v∗ − v) f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

+
1

2

∫
R4d

 d∑
i,j=1

∂(i,j)
v ϕ(x, v) (v∗ − v)i (v∗ − v)j

 f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
+Rf

ϕ,

where the remainder Rf
ϕ of the Taylor expansion has the form

Rf
ϕ = E

(
1

2

∫
R4d

 d∑
i,j=1

(
∂(i,j)
v ϕ(x, v)− ∂(i,j)

v ϕ(x, vf)
)

(v∗ − v)i (v∗ − v)j


f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
,

with vf = ϑfv∗ + (1 − ϑf)v, for some ϑf ∈ [0, 1]. By using the substitution given by
the interaction rule (4.2), i.e.,

v∗ − v = ηf [θ(x)Czξ + S(x, v) +mfHf(x, v, x̂, v̂;π1f, π1g)] ,

we obtain∫
R4d

∇vϕ(x, v) · (v∗ − v) f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

= ηf

∫
R4d

∇vϕ(x, v) · [θ(x)Czξ + S(x, v) +mfHf(x, v, x̂, v̂;π1f, π1g)]

f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

= ηfmf 〈f,∇vϕ · θCzξ〉+ ηfmf 〈f,∇vϕ · (S +Hf[f ])〉 ,(4.10)

having denoted

Hf[f ](x, v) =

∫
R2d

Hf(x, v, x̂, v̂;π1f, π1g)f(x̂, v̂) dx̂ dv̂.
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By taking the expected value w.r.t. ξ ∈ B of (4.10), the term ηfmf 〈f,∇vϕ · θCzξ〉 is
canceled out, since E (ξ) = 0.

Writing (whenever possible) Hf, Hl, θ, and S in place of Hf(x, v, x̂, v̂;π1f, π1g),
Hl(x, v, x̃, ṽ;π1f, π1g), θ(x), and S(x, v), respectively, the same substitution yields
for the second-order term

1

2

∫
R4d

 d∑
i,j=1

∂(i,j)
v ϕ(x, v) (v∗ − v)i (v∗ − v)j

 f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

=
1

2
(ηf)2

∫
R4d

[
d∑

i,j=1

∂(i,j)
v ϕ(x, v) (θCzξ + S +mfHf)i

(θCzξ + S +mfHf)j

]
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂.

Notice that if we compute the expected value of the expression above, all the cross
terms ξiξj vanish, since they are drawn independently from each other. Hence we
obtain

λf 〈Q(f, f), ϕ〉 = λfηfmf 〈f,∇vϕ · (S +Hf[f ])〉+
1

2
λf (ηf)

2
mfς2

〈
f, (θCz)

2∆vϕ
〉

+
1

2
λf (ηf)

2
Ξf
ϕ[f, f ] + λfRf

ϕ,

where the notation Ξf
ϕ[f, f ] stands for

Ξf
ϕ[f, f ] =

∫
R4d

[
d∑

i,j=1

∂(i,j)
v ϕ (S +mfHf)i (S +mfHf)j

]
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂.

By means of the same computations, we can derive a similar expression for 〈Q(f, g), ϕ〉.
Indeed, from (4.8) we have

λl 〈Q(f, g), ϕ〉 = λlηlml 〈f,∇vϕ · Hl[g]〉+
1

2
λl (ηl)

2
Ξl
ϕ[f, g] + λlRl

ϕ,

having denoted

Hl[g](x, v) =

∫
R2d

Hl(x, v, x̃, ṽ;π1f, π1g)g(x̃, ṽ) dx̃ dṽ,

Ξl
ϕ[f, g] = (ml)

2
∫
R4d

[
d∑

i,j=1

∂(i,j)
v ϕ(x, v)Hl

iH
l
j

]
f(x, v)g(x̃, ṽ) dx dv dx̃ dṽ,

Rl
ϕ = E

(
1

2

∫
R4d

 d∑
i,j=1

(
∂(i,j)
v ϕ(x, v)− ∂(i,j)

v ϕ(x, vl)
)

(v∗∗ − v)i (v∗∗ − v)j


f(x, v)g(x̃, ṽ) dx dv dx̃ dṽ

)
,
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with vl = ϑlv∗∗ + (1− ϑl)v for some ϑl ∈ [0, 1].
If we now apply the rescaling rules (4.9), the following simplifications occur:

λfηfmf = 1, λlηlml = 1, λf (ηf)
2
ς2mf = σ2, λl (ηl)

2
= ε, λl (ηl)

2
= ε.

Hence, if we let ε→ 0 and we assume that, for every ϕ ∈ Tδ,

lim
ε→0

(
ε

2

∥∥Ξf
ϕ[f, f ]

∥∥+
ε

2

∥∥Ξl
ϕ[f, g]

∥∥+
1

ε

∥∥Rf
ϕ

∥∥+
1

ε

∥∥Rl
ϕ

∥∥) = 0(4.11)

holds true, we obtain the weak formulation of a Fokker–Planck-type equation for the
followers’ dynamics

∂

∂t
〈f, ϕ〉+ 〈f, v · ∇xϕ〉 =

〈
f,∇vϕ · G [f, g] +

1

2
σ2(θCz)

2∆vϕ

〉
,(4.12)

where

G [f, g] = S +Hf[f ] +Hl[g].

We leave the details of the proof of the limit (4.11) to the following section, section
4.3.

Since ϕ has compact support, (4.12) can be recast in strong form by means of
integration by parts. Coupling the resulting PDE with the microscopic ODEs for the
leaders k = 1, . . . , N l, we eventually obtain the system

(4.13)


∂tf + v · ∇xf = −∇v · (G [f, g] f) + 1

2σ
2(θCz)

2∆vf,

ẏk = wk =

∫
R2d

Kf(yk, x)f(x, v) dx dv +

Nl∑
`=1

Kl(yk, y`) + uk.

Remark 4.4. Observe that, assuming f in (4.13) to be the empirical measure

f =
∑Nf

i=1 δ(xi(t),vi(t)) concentrated on the trajectories (xi(t), vi(t)) of the microscopic
dynamics (3.1), we recover the original microscopic model itself.

Remark 4.5. In terms of model hierarchy one could image computing the mo-
ments of (4.13) in order to further reduce the complexity. Let us stress that deriving a
consistent macroscopic system from the kinetic equation is, in general, a difficult task,
since equilibrium states are difficult to obtain; therefore, no closure of the moments
equations is possible. For self-organizing models similar to (4.13), in the noiseless case
(i.e., σ ≡ 0), a standard way to obtain a closed hydrodynamic system is to assume
the velocity distribution to be monokinetic, i.e., f(t, x, v) = ρ(t, x)δ(v − V (t, x)), and
the fluctuations to be negligible; thus computing the moments of (4.13) leads to the
following macroscopic system for the density ρ and the bulk velocity V :

(4.14)


∂tρ+∇x · (ρV ) = 0,

∂t(ρV ) +∇x · (ρV ⊗ V ) = Gm [ρ, ρl, V, V l] ρ,

ẏk = wk =

∫
Rd
Kf(yk, x)ρ(t, x) dx+

Nl∑
`=1

Kl(yk, y`) + uk,

where ρl(x, t), V l(x, t) represent the leaders’ macroscopic density and bulk velocity,
respectively, and Gm the macroscopic interaction operator; see [5, 20] for further
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details. For σ > 0, the derivation of a macroscopic system depends highly on the
scaling regime between the noise and the interaction terms; see, for example, [19, 20,
45]. Furthermore, the presence of diffusion operator in model (4.13) depends on the
spatial domain; therefore, the derivation of a reasonable macroscopic model is not
trivial and it is left for further studies.

4.3. Estimates for the remainder terms. Motivated by the results in [50],
we shall estimate the quantity

∥∥Rf
ϕ

∥∥ as follows: since vf = ϑfv∗ + (1 − ϑf)v implies
‖v − vf‖ ≤ ϑf ‖v − v∗‖, then for every ϕ ∈ Tδ it follows that∥∥∥∂(i,j)

v ϕ(x, v)− ∂(i,j)
v ϕ(x, vf)

∥∥∥ ≤M ‖v − vf‖δ ≤M (ϑf)
δ ‖v − v∗‖δ .

Hence, we get

1

ε

∥∥Rf
ϕ

∥∥ ≤ 1

2ε
M (ϑf)

δ E
(∫

R4d

‖v∗ − v‖2+δ
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
=

1

2ε
M (ϑf)

δ |ηf|2+δE
(∫

R4d

‖θξ + S +mfHf‖2+δ
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
=

1

2
M (ϑf)

δ |ε|1+δE
(∫

R4d

‖θξ + S +mfHf‖2+δ
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
.

From the inequality

‖θξ + S +mfHf‖2+δ ≤ 22+2δ
(
‖θξ‖2+δ

+ ‖S‖2+δ
+ ‖mfHf‖2+δ

)
,

and since θ ∈ [0, 1], we obtain

∥∥Rf
ϕ

∥∥ ≤ 21+2δM (ϑf)
δ |ε|1+δ

(
(mf)

2 E
(
‖ξ‖2+δ

)
+mf

∫
R2d

‖S‖2+δ
f(x, v) dx dv

+ (mf)
2+δ

∫
R4d

‖Hf‖2+δ
f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
.

Analogously for
∥∥Rl

ϕ

∥∥ we get

∥∥Rl
ϕ

∥∥ ≤ 1

2
M (ϑl)

δ |ε|1+δ (ml)
2+δ

∫
R4d

‖Hl‖2+δ
f(x, v)g(x̃, ṽ) dx dv dx̃ dṽ.

Similar computations performed on the terms Ξf
ϕ[f, f ] and Ξl

ϕ[f, g] yield the inequal-
ities

ε

2

∥∥Ξf
ϕ[f, f ]

∥∥ ≤ ε

2
Mϑf

(
mf

∫
R2d

‖S‖2 f(x, v) dx dv

+ (mf)
2
∫
R4d

‖Hf‖2 f(x, v)f(x̂, v̂) dx dv dx̂ dv̂

)
,

ε

2

∥∥Ξl
ϕ[f, g]

∥∥ ≤ ε

2
Mϑl (ml)

2
∫
R4d

‖Hl‖2 f(x, v)g(x̃, ṽ) dx dv dx̃ dṽ.

Remembering that solutions of (4.6) have support uniformly bounded in time and
finite constant mass (i.e., mf(t) = mf(0) < +∞), we have proven the following result.
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Theorem 4.6. Fix T > 0, δ > 0, u : [0, T ] → RdNl

, and let, for every ε > 0,
(fε, yε1, . . . , y

ε
Nl) be a δ-weak solution of (4.6) corresponding to the control u and the

initial condition (f0, y0
1 , . . . , y

0
Nl), and where the quantities ηf, ηl, λf, λl, and ς2 are

rescaled w.r.t. ε according to (4.9). Suppose that

1. E
(
‖ξ‖2+δ

)
is finite,

2. the functions S,Hf and Hl are in Lploc for p = 2, 2 + δ.
Then, as ε → 0, the solutions (fε, yε1, . . . , y

ε
Nl) converge pointwise, up to a subse-

quence, to (f, y1, . . . , yNl), where f satisfies the Fokker–Planck-type equation (4.12)
with initial datum (f0, y0

1 , . . . , y
0
Nl), and for every k = 1, . . . , N l, yk satisfies ẏk = wk =

∫
R2d

Kf(yk, x)f(x, v) dx dv +

Nl∑
`=1

Kl(yk, y`) + uk,

yk(0) = y0
k.

Remark 4.7. The hypothesis of admissibility in Definition 4.3 makes sure that all
the integrals considered in the proof of Theorem 4.6 exist and are finite.

Remark 4.8. The choice of the functions S,Hf, and Hl made in (4.3) and (3.3)
clearly satisfy the hypotheses of Theorem 4.6 for any δ > 0. Hence, we expect the
simulation of system (4.6) with the scaling (4.9) to be a good approximation of the
ones of the original microscopic model (3.1) for sufficiently small values of ε.

5. Optimal control of the crowd. In this section we discuss how one can
(optimally) control the crowd of followers by means of “invisible” leaders, whose
dynamics are obtained by the minimization of certain cost functionals. It is well
known that in case of alignment-dominated models the invisibility of leaders is not a
limitation per se, but nothing is known about more complex models. In particular,
the coupling between random walk and alignment gives rise to interesting phenomena;
cf. [53]. Note that, in order to fit real behavior (see also section 7), the ratio between
random walk force and alignment force should be large enough to assure a complete
exploration of the domain, and small enough to catch the herding behavior. By the
way, this also narrows the choice of parameters.

5.1. A preliminary test. To fix the ideas, we plot a typical outcome of the
microsimulator when the crowd is far away from the exit. At the initial time, agents
are uniformly distributed in a square; see Figure 5.1. We refer to this situation as
Setting 0 (model parameters for this and the following simulations are reported in
Table 5.1). With no leaders, the group splits into several subgroups, each of them
having a common direction of motion (local consensus is reached in a very short
time); see Figure 5.1 (left). With five leaders moving rightward, the crowd reaches
immediately a consensus and aligns with leaders; see Figure 5.1 (center). If, for some
reason, leaders cease to be influential, the crowd tend to split again; see Figure 5.1
(right).

This makes it clear how difficult it is to control the crowd in this scenario, since
leaders have to fight continuously against the natural tendency of the crowd to split
into subgroups and move randomly, even after that a consensus is reached; cf. [41].

A natural question is about the minimum number of leaders needed to lead the
whole crowd to consensus, i.e., to align all the agents along a desired direction. Numer-
ical simulations suggest that this number strongly depends on the initial conditions.
Table 5.2 gives a rough idea in the case of multiple runs with random initial conditions.
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Fig. 5.1. Setting 0 (no exit is visible here). Microscopic dynamics. The crowd is initially
confined in the green dashed square. Leaders’ trajectories are in magenta, followers’ are in blue.
The final positions of followers are in red. Left: no leaders. Center: five leaders moving rightward
all the time. Right: five leaders moving rightward, disappearing after a short time. (Figure appears
in color online only.)

Table 5.1
Model parameters.

Setting Nl Nf N Cf
r Cl

r Ca Cz Cτ Cs s2 r = ζ γ

0 0-5 150 10 2 1.5 2 0.25 – 1 0.5 0.4 1
1 0-3 150 10 2 1.5 3 0.2 1 1 0.5 0.4 1
2 0-2 100 10 2 1.5 3 0.2 1 1 0.5 0.4 1
3 0-6 30-70 10 1 0 – – 1 1 0.5 0.5 1

Table 5.2
Number of leaders versus percentage of runs where consensus is reached.

#leaders 1 2 3 4 5
consensus reached 0% 1% 27% 58% 100%

At the mesoscopic level we consider the control of the Boltzmann-type dynamics
(4.6), where we account for small values of the scaling parameter ε, in order to be
sufficiently close to the Fokker–Planck model (4.13). In this case, the control through
few microscopic leaders has to face the tendencies of the continuous density to spread
around the domain and to locally align with the surrounding mass. Moreover, their
action is weakened by the type of interaction considered. Figure 5.2 shows the results
corresponding to the kinetic density in the Setting 0. Unlike the microscopic case, no
splitting occurs where there is no action of the leaders. Instead, the mass smears out
around the domain, due to the diffusion term.
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Fig. 5.2. Setting 0 (no exit is visible here). Mesoscopic dynamics. The crowd density is
initially confined in the green dashed square shown in the left figure. Left: no leaders. Center: five
leaders moving rightward all the time. Right: five leaders moving rightward, disappearing after a
short time. (Figure appears in color online only.)



1698 G. ALBI, M. BONGINI, E. CRISTIANI, AND D. KALISE

5.2. Setting the optimization problem. The functional to be minimized can
be chosen in several ways. The effectiveness mostly depends on the optimization
method which is used afterwards. The most natural functional is the evacuation
time,

(5.1) min{t > 0 | xi(t) /∈ Ω ∀i = 1, . . . , Nf},

subject to (3.1) or (4.6) and with u(·) ∈ Uadm, where Uadm is the set of admissible
controls (including, for instance, box constraints to avoid excessive velocities).

Another cost functional, more affordable by standard methods [3, 15], is

(5.2) l(x,y, u) = µf
Nf∑
i=1

‖xi − xτ‖2 + µl
Nf∑
i=1

Nl∑
k=1

‖xi − yk‖2 + ν

Nl∑
k=1

‖uk‖2

for some positive constants µf, µl, and ν. The first term promotes the fact that
followers have to reach the exit while the second forces leaders to keep contact with the
crowd. The last term penalizes excessive velocities. This minimization is performed
at every instant (instantaneous control), or along a fixed time frame [ti, tf ]

(5.3) min
u(·)∈Uadm

∫ tf

ti

l(x(t),y(t), u(t)) dt subject to (3.1) or (4.6).

With regards to the mesoscopic scale, both functionals (5.1) and (5.2) can be
considered. However, at the continuous level the presence of few invisible leaders does
not ensure that the whole mass of followers is evacuated. The major difficulty to reach
a complete evacuation of the continuous density is mainly due to the presence of the
diffusion term and to the invisible interaction w.r.t. the leaders. Therefore, a more
appropriate functional is given by the mass evacuated at the final time T ,

(5.4) min
u(·)∈Uadm

{
mf(T ) =

∫
Rd

∫
Ω

f(T, x, v) dx dv

}
subject to (4.6).

Remark 5.1. We will not require that leaders themselves reach the exit, but only
the followers.

5.2.1. Model predictive control. A computationally efficient way to address
the optimal control problem (5.3) is by means of a relaxed approach known as model
predictive control (MPC) [46]. We consider a sampling of the dynamics (3.1) at
every time interval ∆t, and the following minimization problem over Nmpc time steps,
starting from the current time step n̄:

(5.5) min
u(·)∈Uadm

n̄+Nmpc−1∑
n=n̄

l(x(n∆t),y(n∆t), u(n∆t))

generating an optimal sequence of controls {u(n̄∆t), . . . , u((n̄+Nmpc − 1)∆t)}, from
which only the first term is taken to evolve the dynamics for a time ∆t, to recast the
minimization problem over an updated time frame n̄← n̄+1. Note that for Nmpc = 2,
the MPC approach recovers an instantaneous controller, whereas for Nmpc = (tf −
ti)/∆t it solves the full time frame problem (5.3). Such flexibility is complemented
with a robust behavior, as the optimization is reinitialized every time step, allowing
one to address perturbations along the optimal trajectory.
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5.2.2. Modified compass search. When the cost functional is highly irregular
and the search of local minima is particularly difficult, it could be convenient to move
towards random methods as compass search (see [8] and references therein), genetic
algorithms, or particle swarm optimization. In the following we describe a compass
search method that works surprisingly well for our problem.

First of all, we consider only piecewise constant trajectories, introducing suitable
switching times for the leaders’ controls. More precisely, we assume that leaders move
at constant velocity for a given fixed time interval and when the switching time is
reached, a new velocity vector is chosen. Therefore, the control variables are the
velocities at the switching times for each leader. Note that controlling directly the
velocities rather than the acceleration makes the optimization problem much simpler
because minimal control variations have an immediate impact on the dynamics.

Starting from an initial guess, at each iteration the optimization algorithm modi-
fies the current best control strategy found so far by means of small random variations
of the current values. Then, the cost functional is evaluated. If the variation is ad-
vantageous (the cost decreases), the variation is kept; otherwise it is discarded. The
method stops when the strategy cannot be improved further. As an initial guess for
the strategy, leaders move at constant speed along the direction joining the target
with their initial position.

6. Numerical tests. In what follows we present some numerical tests to validate
our modeling framework at the microscopic and mesoscopic levels.

The microscopic model (3.1) is discretized by means of the explicit Euler method
with a time step ∆t = 0.1. The evolution of the kinetic density in (4.13) is approxi-
mated by means of binary interaction algorithms, which approximates the Boltzmann
dynamics (4.5) with a meshless Monte Carlo method for small values of the parameter
ε, as presented in [4]. We choose ε = 0.02, ∆t = 0.01, and a sample of Ns = 10000
particles to reconstruct the kinetic density. This type of approach is inspired by nu-
merical methods for plasma physics and it allows one to solve the interaction dynamics
with a reduced computational cost compared with mesh-based methods, and an accu-

racy of O(N
−1/2
s ). For further details on this class of binary interaction algorithms,

see [4, 48].
Concerning optimization, in the microscopic case we adopt either the compass

search with functional (5.1) or MPC with functional (5.3). In the mesoscopic case we
adopt the compass search with functional (5.4).

We consider three settings for pedestrians, without and with obstacles, hereafter
referred to Settings 1, 2, and 3, respectively. In Setting 1 we set the compass search
switching times every 20 time steps, and in Setting 2 every 50, having fixed the
maximal random variation to 1 for each component of the velocity. In Setting 1, the
inner optimization block of the MPC procedure is performed via a direct formulation,
by means of the fmincon routine in MATLAB, which solves the optimization problem
via an SQP method.

6.1. Setting 1. To begin with, let us consider the case of a large room with
no obstacles; see Figure 6.1. The exit is a point located at E = (30, 10) which can
be reached from any direction. We set Σ = {x ∈ R2 : |x − E| < 4}. This simple
setting helps elucidate the role and the interplay of the different terms of our model.
Followers are initially randomly distributed in the domain [17, 29] × [6.5, 13.5] with
velocity (0, 0). Leaders, if present, are located to the left of the crowd. Parameters
are reported in Table 5.1.
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Fig. 6.1. Setting 1. Left: initial positions of followers (circles) and leaders (squares). Right:
uniform density of followers and the microscopic leaders (squares).

6.1.1. Microscopic model. Figure 6.2 (first row) shows the evolution of the
agents computed by the microscopic model, without leaders. Followers having a direct
view of the exit immediately point towards it, and some group mates close to them
follow thanks to the alignment force. On the contrary, the farthest people are split
into several cohesive groups with random direction and never reach the exit.
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Fig. 6.2. Setting 1. Microscopic dynamics. First row: no leaders. Second row: three leaders,
go-to-target strategy. Third row: three leaders, optimal strategy (compass search).

Figure 6.2 (second row) shows the evolution of the agents with three leaders. The
leaders’ strategy is defined manually. More precisely, at any time the control is equal
to the unit vector pointing towards the exit from the current position. Hereafter, we
refer to this strategy as the “go-to-target.” Note that the final leaders’ trajectories
are not straight lines because of the additional repulsion force. As can be seen, the
crowd behavior changes completely since, this time, the whole crowd reaches the
exit. However, followers form a heavy congestion around the exit. The shape of the
congestion is circular: this is in line with the results of other social force models as
well as physical observation, which report the formation of an “arch” near the exits.
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The arch is correctly substituted here by a full circle due to the absence of walls. Note
that the congestion notably delays the evacuation. This suggests that the strategy of
the leaders is not optimal and can be improved by an optimization method.

Figure 6.2 (third row) shows the evolution of the agents with three leaders and the
optimal strategy obtained by the compass search algorithm. Surprisingly enough, the
optimizator prescribes that leaders divert some pedestrians from the right direction,
so as not to steer the whole crowd to the exit at the same time. In this way congestion
is avoided and pedestrian flow through the exit is increased.

In this test we have also run the MPC optimization, including a box constraint
uk(t) ∈ [−1, 1]. We choose µf = 1, µl = 10−5, and ν = 10−5. MPC results are
consistent in the sense that for Nmpc = 2, the algorithm recovers a controlled behavior
similar to the application of the instantaneous controller (or go-to-target strategy).
Increasing the time frame up to Nmpc = 6 improves both congestion and evacuation
times, but results still remain noncompetitive if compared to the whole time frame
optimization performed with a compass search.

In Figure 6.3 we compare the occupancy of the exit’s visibility zone as a function
of time for go-to-target strategy and optimal strategies (compass search, 2-step, and 6-
step MPC). We also show the decrease of the value function as a function of attempts
(compass search) and time (MPC). Evacuation times are compared in Table 6.1. It
can be seen that only the long-term optimization strategies are efficient, being able
to moderate congestion and clogging around the exit.
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Fig. 6.3. Setting 1. Optimization of the microscopic dynamics. Top-left: occupancy of the
exit’s visibility zone Σ as a function of time for optimal strategy (compass search) and go-to-target
strategy. Top-right: decrease of the value function (5.1) as a function of the iterations of the compass
search (for 50 and 150 followers). Bottom: MPC optimization. Occupancy of the exit’s visibility
zone Σ as a function of time, CPU time of the optimization call embedded in the MPC solver, and
the evolution of the corresponding value ( 2-step and 6-step).
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Table 6.1
Setting 1. Evacuation times (time steps). CS = compass search, IG = initial guess.

No leaders Go-to-target 2-MPC 6-MPC CS (IG)
Nf = 50 335 297 342 278 248 (318)
Nf = 150 ∞ 629 619 491 459 (554)

This suggests a quite unethical but effective evacuation procedure, namely mis-
leading some people to a false target and then leading them back to the right one,
when exit conditions are safer. Note that in real-life situations, most of the injuries
are actually caused by overcompression and suffocation rather than urgency.

6.1.2. Mesoscopic model. We consider here the case of a continuous density
of followers. Figure 6.4 (first row) shows the evolution of the uncontrolled system of
followers. Due to the diffusion term and the topological alignment, a large part of the
mass spreads around the domain and is not able to reach the target exit.
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Fig. 6.4. Setting 1. Mesoscopic dynamics. First row: no leaders. Second row: three leaders,
go-to-target strategy. Third row: three leaders, optimal strategy (compass search).

In Figure 6.4 (second row) we account the action of three leaders, driven by a
go-to-target strategy defined as in the microscopic case. It is clear that also in this
case the action of leaders is able to influence the system and promote the evacuation,
but the presence of the diffusive term causes the dispersion of part of the continu-
ous density. The result is that part of the mass is not able to evacuate, unlike the
microscopic case.

In order to improve the go-to-target strategy we rely on the compass search,
where, differently from the microscopic case, the optimization process accounts for
the objective functional (5.4), i.e., the total mass evacuated at final time. Figure 6.4
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(third row) sketches the optimal strategy found in this way: on one hand, the two
external leaders go directly towards the exit, evacuating part of the density; on the
other hand, the central leader moves slowly backward, misleading part of the density
and only later does it move forward towards the exit. The efficiency of the leaders’
strategy is due, in particular, to the latter movement of the last leader, which is able
to gather the followers’ density left behind by the others, and to reduce the occupancy
of the exit’s visibility area by delaying the arrival of part of the mass.

In Figure 6.5 we summarize, for the three numerical experiments, the evacuated
mass and the occupancy of the exit’s visibility area Σ as functions of time. The
occupancy of the exit’s visibility area shows clearly the difference between the leaders’
action: for the go-to-target strategy, the amount of mass occupying Σ concentrates
quickly and the evacuation is partially hindered by the clogging effect, as only 71.3%
of the total mass is evacuated. The optimal strategy (obtained after 30 iterations)
is able to better distribute the mass arrival in Σ, and an higher efficiency is reached,
evacuating up to 85.2% of the total mass.
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Fig. 6.5. Setting 1. Occupancy of the exit’s visibility zone Σ, dotted lines, and percentage
of evacuated mass, star lines, as function of time. Left: histograms for the case without leaders
(percentage of evacuated mass 41.2%). Center: histograms for leaders moving with the go-to-target
strategy (percentage of evacuated mass 71.3%). Right: histograms for leaders with an optimal strat-
egy (percentage of evacuated mass 85.2%).

Remark 6.1. In a realistic context it is impossible to know a priori the initial
position and velocity of a crowd, but they can be expressed as a joint probability
density, obtained from statistics on real data. Therefore, from the simulation of the
kinetic model (4.13), one can estimate the evolution of these probabilities and testing
the efficiency of specific control strategies.

6.2. Setting 2. In the following we test the microscopic model (with compass
search optimization) in a more complicated setting, which has also some similarities
with the one considered in section 7. The crowd is initially confined in a rectangular
room with three walls. In order to evacuate, people must first leave the room and
then search for the exit point. We assume that walls are not visible, i.e., people can
perceive them only by physical contact. This corresponds to an evacuation in case of
null visibility (but for the exit point which is still visible from within Σ). Walls are
handled as in [28] (see also [27] for an overview of the techniques employed to handle
obstacles in pedestrian simulations).

If no leaders are present, the crowd splits in several groups and most of the people
hit the wall; see Figure 6.6 (first row). After some attempts the crowd finds the way
out, and then it crashes into the right boundary of the domain. Finally, by chance
people decide, en cascade, to go upward. The crowd leaves the domain in 1162 time
steps.
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If instead we hide in the crowd two leaders who point fast towards the exit (Figure
6.6 (second row)), the evacuation from the room is completed in very short time, but
after that, the influence of the leaders vanishes. Unfortunately, this time people decide
to go downward after hitting the right boundary, and nobody leaves the domain.
Slowing down the two leaders helps keeping the leaders’ influence for a longer time,
although it is quite difficult to find a good choice.

Compass search optimization finds (after 30 iterations) a nice strategy for the two
leaders which remarkably improves the evacuation time; see Figure 6.6 (third row).
One leader behaves similarly to the previous case, while the other diverts the crowd
pointing southeast (SE), then comes back to wait for the crowd, and finally points
northeast (NE) towards the exit. This strategy allows one to bring everyone to the
exit in 549 time steps, without bumping anyone against the boundary, and avoiding
congestion near the exit.
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Fig. 6.6. Setting 2. Microscopic simulation. First row: no leaders (see M101701 01.mp4
[local/web 12.9MB]). Second row: two leaders and go-to-target strategy (see M101701 02.mp4 [lo-
cal/web 9.71MB]) and with slower leader (see M101701 03.mp4 [local/web 6.87MB]). Third row: two
leaders and best strategy computed by the compass search (see M101701 04.mp4 [local/web 7.19MB]).

6.3. Setting 3. In the following test we propose a different use of the leaders.
Rather than steering the mass towards the exit, they can be employed to fluidify
the evacuation near a door. In fact, it is observed that when several pedestrians
reach a bottleneck at the same time they slow each other down, possibly coming to a
deadlock. As a consequence, none of them can pass through the bottleneck. We want
to investigate the possibility of using leaders as small smart obstacles, which alleviate
the high friction among the bodies just moving randomly near the exit.

We consider a large room with a single exit door located on the right wall, visible
from any point (Σ = R2). We nullify the repulsion force perceived by the leaders; see
Table 5.1. Most important, in this test we assume that followers have nonzero size
and hard collisions are not possible. This is achieved assuming that they are circular-

M101701_01.mp4
http://epubs.siam.org/doi/suppl/10.1137/15M1017016/suppl_file/M101701_01.mp4
M101701_02.mp4
M101701_02.mp4
http://epubs.siam.org/doi/suppl/10.1137/15M1017016/suppl_file/M101702_01.mp4
M101701_03.mp4
http://epubs.siam.org/doi/suppl/10.1137/15M1017016/suppl_file/M101703_01.mp4
M101701_04.mp4
http://epubs.siam.org/doi/suppl/10.1137/15M1017016/suppl_file/M101704_01.mp4
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Fig. 6.7. Setting 3 (exit is visible from any point). Left: evacuation with no leaders. Center:
evacuation with three leaders. Right: percentage of evacuation failures as a function of the number
of leaders, for Nf = 30, 50, 70.

shaped with diameter 0.25, and keeping frozen those pedestrians who aim at moving
too close to another pedestrian in one time step. The width of the exit is 0.45. Leaders
stay near the exit at any time and move with a random velocity, each component being
uniformly distributed in [−1.3, 1.3]. We say that the evacuation succeeded if Nf − 10
followers leave the room within 2000 time steps; otherwise we say that the evacuation
failed. Average quantities are computed running the simulation 200 times.

Figure 6.7 shows a typical outcome without (left) and with (center) leaders. Fig-
ure 6.7 (right) shows the percentage of evacuation failures as a function of the number
of leaders. It is clearly visible that in this scenario the optimal number of leaders is 3,
and this number is independent from the number of evacuees. This is expected since
leaders act at local level near the exit and do not affect people queuing far from the
exit. We noted that the leaders initially act as a barrier for the incoming pedestrians
and slow down the evacuation. Later on, instead, they are quite efficient in destroy-
ing symmetries and avoiding deadlocks. As a by-product, we confirmed once again
the Braess’s paradox, which states that reducing the freedom of choice (e.g., adding
obstacles in front of the exit [30, 52]) one can actually improve the overall dynamics.

7. Validation of the proposed crowd control technique. The crowd control
technique investigated in the previous sections relies on the fact that pedestrians
actually exhibit herding behavior in special situations, so that the alignment term
in the model is meaningful. The herding behavior has been investigated for a long
time, especially in the psychological literature. To further confirm this behavior in
our scenario, we have organized an experiment involving volunteer pedestrians.

The experiment took place on October 1, 2014 at the Department of Mathematics
of Sapienza – University of Rome, Rome (Italy), at 1 p.m. Participants were chosen
among first-year students. Since courses started just two days before the date of the
experiment and the department has a complex ring-shaped structure, we could safely
assume that most of the students were unfamiliar with the environment.

The experiment. Students were informed to be part of a scientific experiment
aimed at studying the behavior of a group of people moving in a partially unknown
environment. Their task was to leave the classroom II and reach a certain target inside
the department. Students were asked to accomplish their task as fast as possible,
without running and without speaking with others. Participation was completely
voluntarily and not remunerated (only a celebratory T-shirt was given at a later
time).

Seventy-six students (39 girls, 37 boys) agreed to participate in the experiment.
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The students were then divided randomly in two groups: group A (42 people) and
group B (34 people). The two groups performed the experiment independently one
after the other. The target was communicated to the students just before the begin-
ning of the experiment. It was the Istituto Nazionale di Alta Matematica (INdAM),
which is located just upstairs w.r.t. the classroom II. Due to the complex shape of the
environment, there are many paths joining classroom II and INdAM. The shortest
path requires people to leave the classroom, go leftward in a rarely frequented and
unfamiliar area (even for experienced students), and climb the stairs. The target can
be also reached by going rightward and climb other, more frequented, stairs.

In group B there were five incognito students, hereafter referred to as leaders, of
the same age of the others. Leaders were previously informed about the goal of the
experiment and the location of the target. They were also trained in order to steer
the crowd toward the target in minimal time. Nobody recognized them as “special”
before or during the experiment. Unexpectedly, also in group A there was a girl who
knew the target. Therefore, she acted as an unaware leader.

It is important to stress that all of the other students continued their usual activ-
ities and participants were not officially recorded by the organizers. This choice was
crucial to get natural behavior and meaningful results; cf. [29, sect. 3.4.3]. The price
to pay is that we had to extract participants’ trajectories by low-resolution videos
taken by two observers. Moreover, the area just outside classroom II was rather
crowded, introducing a high level of noise into the experiment. Finally, let us mention
that some participants broke the rules of the experiment speaking with others and
running (confirming the natural behavior...). Our experiment can be compared with
those in [33], although in those experiments group cohesion was imposed as a rule to
the participants.

Results. In Figure 7.1 we show the history of left/right decisions taken by the
students just outside the two doors of the classroom. Group A used both exits of the
classroom. The 8-people group which used door 2 was uncertain about the direction
for awhile. Then, once the first two students decided to go rightward, the others
decided simultaneously to follow them. Similarly, the first student leaving from door
1 was uncertain for a few second; then he moved rightward and triggered a clear
domino effect. At t = 20 s the unaware leader moved to the left, inducing hesitation
and mixed behavior in the followers. After that, another domino effect arose.

Group B used only door 1. Invisible leaders were able to trigger a domino effect
but this time four people decided unilaterally not to follow them, although they were
not informed about the destination. At t = 20 s, after the passage of the last leader,
a girl passed through the door and went leftward. Then, at t = 22 s, she suddenly
began to run toward the right. She first induced hesitation and then triggered a new
rightward domino effect.

Discussion. Students have shown a tendency to go rightward, since that part of
the department is more familiar, but this tendency was greatly overcome by the wish
to follow the group mates in front, regardless of their right/left preferences. Also,
after the experiment, the students admitted that they had been influenced by the
leaders because of their clear direction of motion. Interestingly, no more than five
people had been influenced by a single leader. This is compatible with the topological
alignment term used in our model. The small value of N here is due to the fact that
the space in front of the doors was rather crowded and the visibility was reduced.

It is also interesting to note that only four students reached the target alone. This
confirms the tendency not to remain isolated and to form clusters. Video recordings
also show that (bad or well) informed people behaved in a rather recognizable manner,



INVISIBLE CONTROL OF SELF-ORGANIZING AGENTS 1707

0 5 10 15 20 25 30 35 40
time (s)

DOOR 1

DOOR 2

right

left

right

left

informed (unaware)

0 5 10 15 20 25 30 35 40
time (s)

DOOR 1

running

informed (aware)

Fig. 7.1. Time instants corresponding to the students’ right/left decisions in front of the doors
for group A (top) and B (bottom).

walking faster, overtaking the others, and exhibiting a clear direction of motion; cf.
[34]. No follower had overtaken other people.

The five incognito leaders adopted a good but nonoptimal strategy, being too close
to each other, too much concentrated on the front line, and too fast (cf. Figure 6.6
(second row)). This was due to the fact that organizers expected a clearer environment
in front of the doors and, consequently, a faster coming out of the people. A better
distribution in the crowd would lead to better results, although nothing can be done
against a quite noticeable badly informed person.

Conclusions and future work. Both virtual and real experiments suggest that
a bottom-up control technique for crowds like the one proposed in the paper is actually
feasible and surely deserves further attention. Numerical simulations can give impor-
tant insights about optimal strategies for leaders, which can be then made ethically
acceptable and tested in real situations. The main open issue regards the minimal
number of leaders needed to reach the desired goal. For that, further theoretical
investigations as well as real experiments with a larger number of participants and
a clearer environment are needed. The results obtained in Setting 3 should be also
experimentally confirmed.
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