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Abstract. In this paper we present a new algorithm for the solution of Hamilton–Jacobi–
Bellman equations related to optimal control problems. The key idea is to divide the domain of
computation into subdomains which are shaped by the optimal dynamics of the underlying control
problem. This can result in a rather complex geometrical subdivision, but it has the advantage
that every subdomain is invariant with respect to the optimal dynamics, and then the solution can
be computed independently in each subdomain. The features of this dynamics-dependent domain
decomposition can be exploited to speed up the computation and for an efficient parallelization,
since the classical transmission conditions at the boundaries of the subdomains can be avoided.
For their properties, the subdomains are patches in the sense introduced by Ancona and Bressan
[ESAIM Control Optim. Calc. Var., 4 (1999), pp. 445–471]. Several examples in two and three
dimensions illustrate the properties of the new method.
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1. Introduction. The numerical solution of partial differential equations (PDEs)
obtained by applying the dynamic programming principle (DPP) to nonlinear opti-
mal control problems is a challenging topic that can have a great impact in many
areas, e.g., robotics, aeronautics, and electrical and aerospace engineering. Indeed,
by means of the DPP one can characterize the value function of a fully nonlinear
control problem (including also state/control constraints) as the unique viscosity so-
lution of a nonlinear Hamilton–Jacobi equation, and, even more important, from the
solution of this equation one can derive the approximation of an optimal feedback
control. This result is the main motivation for the PDE approach to control problems
and represents the main advantage over other methods, such as those based on the
Pontryagin minimum principle. It is worth mentioning that the characterization via
the Pontryagin principle gives only necessary conditions for the optimal trajectory
and optimal open-loop control. In addition, the numerical procedures for solving the
associated system of ordinary differential equations can be very complicated. In real
applications, finding a good initial guess for the co-state often requires a long and
tedious trial-and-error procedure. This is why it can be useful to combine the DPP
and the Pontryagin approaches, using the approximate value function to compute a
suitable initial guess for the co-state, as proposed in [21].
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In this paper we mainly focus on the minimum time problem, which is associated
to the following Hamilton–Jacobi–Bellman equation:

(1.1)

{
max
a∈A
{−f(x, a) · ∇u(x)− 1} = 0 , x ∈ R

d\Ω0,

u(x) = 0, x ∈ Ω0,

where d is the dimension of the state, A ⊂ R
m is the set of admissible controls, Ω0 is

the target to be reached in minimal time, and f : Rd × A → R
d is the dynamics of

the system. The value function u : Rd → R at the point x is the minimum time to
reach the target starting from x (note that u(x) = +∞ if the target is not reachable).
For numerical purposes, the equation is solved in a bounded domain Ω ⊃ Ω0, so that
boundary conditions on ∂Ω are also needed. A rather standard choice when one has
no additional information on the solution and deals with target problems is imposing
state constraint boundary conditions.

The techniques used to obtain a numerical approximation of the viscosity solution
of (1.1) have been mainly based on finite differences [19, 33] and semi-Lagrangian
schemes [22, 24]. More recently, finite element methods based on discontinuous
Galerkin approximations have been proposed, due to their ability to deal with non-
regular functions, which is the typical case in the framework of viscosity solutions
[17, 18, 35]. It is important to note that traditional approximation schemes, pre-
sented, for example, in [19] and [22], are based on fixed-point iterations, meaning that
the solution is computed at each node of the grid at every iteration until convergence.
Denoting by M the number of nodes in each dimension and considering that the
number of iterations needed for convergence is of order O(M), the total cost of these
full-grid schemes is O(Md+1). We easily conclude that classical algorithms are very
expensive when the state dimension is d ≥ 3, although they are rather efficient for
low-dimensional control problems as shown in [22] (see also the book [24]).

The “curse of dimensionality” has been attacked in many ways, and new tech-
niques have been proposed to accelerate convergence and/or to reduce memory alloca-
tion. In [9] the authors proposed an algorithm that allows one to allocate only a small
portion of the grid at every iteration. Another proposal to reduce the computational
effort is given by the Fast Marching method, introduced in [32, 37] for the Eikonal
equation. While the full-size grid is always allocated, the computation is restricted
to a small portion of the grid, thus saving CPU time. The cost of this method is of
order O(Md logMd). Despite the efficiency of the Fast Marching method, at present
its application to more general equations of the form (1.1) is not an easy task, and it
is still under investigation [13, 16, 20, 34].

Other methods have been proposed exploiting the idea that one can accelerate
convergence by alternating the order in which the grid nodes are visited, giving rise
to the so-called sweeping methods. Unlike Fast Marching methods, these methods do
not require a special ordering of the grid nodes and are somehow blind, so it could
be difficult to prove that they converge after a finite number of sweeps. However,
they are easy to implement, and they have been shown to be efficient for the Eikonal
equation [38] and, more recently, for rather general Hamiltonians [36].

Another strategy is based on the decomposition of the domain Ω. The problem
is actually solved in subdomains Ωj , j = 1, . . . , R, whose size is chosen in order to
reduce the number of grid nodes to a manageable size. Therefore, rather than solving
a unique huge problem, one can solve R smaller subproblems working simultaneously
on several processors. Depending on the choice of the subdomains Ωj , we can have
overlapping regions or interfaces between the subdomains. This is a delicate point,
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since at each iteration it is necessary to exchange information between processors to
make subdomains communicate with each other. Without this communication the
result will not be correct. The interested reader can find in the book [31] a compre-
hensive introduction to domain decomposition techniques, whereas for an application
to Hamilton–Jacobi equations we refer the reader to [14, 25].

Finally, a decomposition of the domain based on the concept of “patchy feedbacks”
has been proposed. It was introduced by Ancona and Bressan in [2], where the authors
studied the problem of the asymptotic stabilization of a control system. Their main
result (see Theorem 2.1 in section 2.3) states that, under suitable assumptions on the
control system, stabilization can be obtained by means of a special feedback control
which is piecewise constant on a particular partition of the domain. Such a partition
has the fundamental property that each part, or “patch,” is positive-invariant with
respect to the optimal dynamics driving the system. This is the spirit of what we
call the “patchy method.” Unfortunately, the result of Ancona and Bressan is purely
theoretical, and their patchy decomposition turns out not to be constructive. Thus,
one has to face the problem of a numerical approximation of such a dynamics-invariant
domain decomposition.

A first example of the discrete patchy method has been proposed by Navasca
and Krener in [28, 29]. The authors adopt a formal method developed by Al’brekht
[1] that essentially translates the Hamilton–Jacobi–Bellman equation associated to
a control problem into a system of algebraic equations, whose unknowns are the
coefficients of the expansions in power series of the cost and optimal feedback. This
gives an approximate solution in a small neighborhood of the origin, which is the first
patch of their domain decomposition. The solution is then extended to new patches
around the first one by picking some boundary points from where optimal trajectories
emanate (they are computed numerically backward in time). Those points define the
centers of new neighborhoods that can be used to restart the method. The solution
is then obtained iteratively by fitting together the approximations in all the patches.
More recently, it has been shown that this technique can be extended to obtain high-
order accuracy in the regions where the value function is smooth (see [26] for more
details).

Despite the high speed of the method, which actually does not use any grid, there
are many open questions regarding its application. The first limitation is the strong
regularity assumptions on the solution necessary to set the problem in these terms.
Indeed, it is well known that the simplest control problems may have optimal controls
which are not even continuous [5]. The second crucial point is the construction of the
patchy decomposition that, in the examples contained in [28, 29], appears not to be
completely invariant with respect to the optimal dynamics. This makes the solution
rather inaccurate, especially near the boundaries of the patches.

The goal of this paper is to present and investigate a new patchy technique based
on a semi-Lagrangian scheme that leads to a dynamics-dependent partition of the
domain Ω. Subdomains turn out to be, up to a discretization error, invariant with
respect to the optimal dynamics, meaning that optimal dynamics do not cross the
boundaries of the subdomains or, equivalently, that boundaries of the subdomains are
optimal trajectories to the target. The algorithm consists of three main steps: First,
a rough solution of (1.1) is computed on a coarse grid. Then, the feedback optimal
control is used to obtain the dynamics-dependent domain decomposition. Finally, the
solution of the equation is computed on a (much) finer grid, independently in each
subdomain, by serial or parallel computation. We will see that the invariance of the
subdomains can be exploited to lower the iterations needed to reach convergence and
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to parallelize efficiently the computation on distributed-memory architectures, since
there is no need for communication among processors.

The paper is organized as follows. Section 2 is devoted to the presentation of the
semi-Lagrangian scheme and the classical domain decomposition technique for (1.1).
Moreover, we briefly describe the results on patchy methods which have been proved
by Ancona and Bressan [2]. In section 3 we present the patchy domain decomposition
method and our algorithm to split the domain into invariant subdomains. We discuss
there several issues related to the implementation of the method and its parallelization.
Section 4 is devoted to the numerical tests on control problems in dimension two, and
section 5 presents some improvements of the basic algorithm. Finally, in section 6 we
present some tests in dimension three.

2. Background. In this section we briefly introduce the numerical scheme used
to discretize (1.1) and the classical domain decomposition technique, including an
algorithm that will be used in the following. Next, we recall the notion of patchy
decomposition and the result by Ancona and Bressan [2] concerning the asymptotic
stabilization of control systems by means of patchy feedbacks, which inspired our
patchy numerical method.

2.1. The semi-Lagrangian scheme. We introduce a structured grid G on Ω
with nodes xi, i = 1, . . . , N . We also denote by G̊ the internal nodes of G and by ∂G
its boundary, whose nodes act as ghost nodes. We map all the values at the nodes onto
an N -dimensional vector U = (U1, . . . , UN). Let us denote by hi,a > 0 a (fictitious)
time step, possibly depending on the node xi and control a (see the book [24] for
details), and by k > 0 the space step. By a standard semi-Lagrangian discretization
[6, 7, 22] of (1.1), it is possible to obtain the following scheme in fixed-point form:

(2.1) U = F (U),

where F : RN → R
N is defined componentwise by

[F (U)]i =

⎧⎪⎨⎪⎩
min
a∈A
{I [U ] (xi + hi,af(xi, a)) + hi,a} , xi ∈ G̊ \ Ω0,

0, xi ∈ Ω0 ∩G,
+∞, xi ∈ ∂G.

The discrete value function U is extended on the whole space Ω by the interpolation
operator I. In order to fix ideas, one should consider the linear interpolation in R

d

described in [15], but other choices are available [24].
We choose the time step hi,a such that |hi,af(xi, a)| = k for every i = 1, . . . , N

and a ∈ A, so that the point xi + hi,af(xi, a) falls in one of the first neighboring cells
around xi. The minimum over A is evaluated by direct comparison, discretizing the
set A with Nc points. Note that defining F (U) = +∞ on ∂G corresponds to imposing
state constraint boundary conditions. The final iterative scheme reads

(2.2) U (n+1) = F (U (n)), U (0) =

{
0 on Ω0 ∩G,
+∞ otherwise.

We refer the reader to [22, 24] for details and convergence results. With the discrete
value function U in hand, we can obtain a discrete feedback map a∗k : Ω → A just
defining

(2.3) a∗k(x) := argmin
a∈A
{I[U ](x+ hx,af(x, a)) + hx,a} .
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Under rather general assumptions [23], it can be shown that this is an approximation
of the feedback map constructed for the continuous problem as

(2.4) a∗(x) := argmax
a∈A
{−f(x, a) · ∇u(x)− 1} .

A detailed discussion on the construction of the feedback maps and of the optimal
trajectory solution of the minimum time problem can be found in [22, 23].

2.2. Domain decomposition method. The domain decomposition method
allows one to split the problem in Ω into R subproblems in subsets Ωj , j = 1, . . . , R,
such that Ω = Ω1∪· · ·∪ΩR. For every pair j �= � of indices corresponding to adjacent
subdomains Ωj and Ω�, let us denote by Ωj� the nonempty overlapping zone Ωj ∩Ω�,
which is assumed to contain at least one grid cell.

We also denote by N j the number of nodes of Ωj , by U j the restriction of U to
Ωj , and by F j : RNj → R

Nj

the restriction of the operator F in (2.1) to Ωj . Then,
we define globally in Ω the following splitting operator FSPLIT : RN → R

N , given
componentwise by

[FSPLIT(U)]i ≡

⎧⎪⎨⎪⎩
[F j(U j)]i if ∃j such that xi ∈ Ωj \

⋃
� �=j

Ωj�,

min
j :xi∈Ωj

{[F j(U j)]i} otherwise.

Following [25], it is easy to prove that fixed-point iterations for F and FSPLIT lead to
the same solution.

We now describe a simple algorithm to compute the fixed point of FSPLIT.
Domain Decomposition Algorithm.

Step 1. (Initialization) For n = 0 the initial guess U (0) ∈ R
N is fixed to 0 on the

nodes corresponding to the target Ω0 and +∞ elsewhere.
Step 2. (Computation) U (n+1/2) is computed separately in every subdomain Ωj by

U j,(n+1/2) = F j(U j,(n)), j = 1, . . . , R .

Step 3. (Coupling)

U
(n+1)
i =

⎧⎪⎨⎪⎩
U

j,(n+1/2)
i if ∃j such that xi ∈ Ωj \

⋃
� �=j

Ωj�,

min
j :xi∈Ωj

{
U

j,(n+1/2)
i

}
otherwise.

Step 4. (Stopping criterion) If ‖U (n+1) − U (n)‖∞ >tol, go to Step 2 with n← n+ 1;
otherwise stop.

In order to speed up the convergence of the above algorithm, we use iterations of
Gauss–Seidel type, meaning that we employ the updated values of the nodes as soon
as they are available.

The domain decomposition method can be used in a natural way to parallelize
the computation. Simply, each subdomain is assigned to a processor. Synchronization
among processors is performed at each iteration after step 3. Note that, as a limiting
case, the algorithm can also be used in serial computation (one processor).

From now on the final solution computed by the domain decomposition algorithm
will be denoted by UDD.
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2.3. Patchy feedbacks and stabilization for control systems. The inspir-
ing idea at the basis of the numerical method we present in the next section is the
notion of a “patch.” It was introduced by Ancona and Bressan in [2] in the con-
text of the stabilization of control systems. Let us recall here for completeness their
main definitions and results. We refer the interested reader to [2] for details and to
[3, 4, 10, 11] for further results on this subject.

We consider the control system

(2.5) ẏ(t) = f(y(t), a(t)), a(t) ∈ A,

assuming that the control set A ⊂ R
m is compact and the dynamics f : Rd×A→ R

d

is sufficiently smooth. Moreover, we choose as admissible controls all the functions a
belonging to

A := {a : (0,∞)→ A | a is measurable} .

For every point x ∈ R
d and admissible control a0 ∈ A, we denote by y(· ;x, a0)

the absolutely continuous function defined on some maximal interval [0; τmax(x, a0))
satisfying the system (2.5) with initial condition y(0) = x and control a0.

The following definition extends to control systems the classical notion of stability.
Definition 2.1. The system (2.5) is said to be globally asymptotically control-

lable (to the origin) if the following hold:
1. For each x ∈ R

d there exists some admissible control a0 such that the trajec-
tory t→ y(t) = y(t;x, a0) is defined for all t ≥ 0 (i.e., τmax(x, a0) =∞) and
y(t)→ 0 as t→∞.

2. For each ε > 0 there exists δ > 0 such that for each x ∈ R
d with |x| < δ there

is an admissible control a0 as in condition 1 such that |y(t)| < ε for all t ≥ 0.
Given an asymptotically controllable system, a classical problem is finding a feed-

back control a = ψ(y) : Rd → A such that all the trajectories of the corresponding
closed-loop system

(2.6) ẏ = f(y, ψ(y))

tend asymptotically to the origin. Since this problem may not admit any solution
in the class of continuous feedbacks, Ancona and Bressan introduce and investigate
the properties of a particular class of discontinuous feedbacks, the so-called patchy
feedbacks.

The following definition introduces the fundamental concept of a patch.
Definition 2.2. Let P ⊂ R

d be an open domain with smooth boundary ∂P, and
let g be a smooth vector field defined on a neighborhood of P. We say that the pair
(P , g) is a patch if P is a positive-invariant region for g, i.e., at every boundary point
y ∈ ∂P the inner product of g with the outer normal n satisfies

〈g(y), n(y)〉 < 0.

Then, by means of a superposition of patches, we get the notion of a patchy vector
field on a domain Ω ⊂ R

d.
Definition 2.3. We say that g : Ω → R

d is a patchy vector field if there exists
a family of patches {(Ωα, gα) : α ∈ I} such that

• I is a totally ordered index set,
• the open sets Ωα form a locally finite covering of Ω,



A PATCHY DP SCHEME FOR HJB EQUATIONS A2631

• the vector field g can be written in the form

g(y) = gα(y) if y ∈ Ωα \
⋃
β>α

Ωβ .

We use (Ω, g, (Ωα, gα)α∈I) to denote the patchy vector field and the family of
patches. By applying the previous definitions to the closed-loop system (2.6), we
define a patchy feedback control as a piecewise constant map ψ : Rd → A such that
the vector field g(y) := f(y, ψ(y)) is a patchy vector field. More precisely, we have
the following definition.

Definition 2.4. Let (Ω, g, (Ωα, gα)α∈I) be a patchy vector field. Assume that
there exist control values ψα ∈ A such that, for each α ∈ I,

gα(y) = f(y, ψα) ∀y ∈ Ωα \
⋃
β>α

Ωβ.

Then, the piecewise constant map

ψ(y) = ψα if y ∈ Ωα \
⋃
β>α

Ωβ

is called a patchy feedback control on Ω.
Definition 2.5. A patchy feedback control ψ : Rd \{0} → A is said to asymptot-

ically stabilize the closed-loop system (2.6) with respect to the origin if the following
hold:

1. For each x ∈ R
d \ {0} and for every trajectory y(·) of (2.6) starting from x

one has y(t)→ 0 as t→ τmax(x).
2. For each ε > 0 there exists δ > 0 such that, for each x ∈ R

d \{0} with |x| < δ
and for every trajectory y(·) of (2.6) starting from x, one has |y(t)| < ε for
all 0 ≤ t < τmax(x).

Finally, the main result of Ancona and Bressan can be summarized as follows.
Theorem 2.1. If the system (2.5) is asymptotically controllable, then it admits

an asymptotically stabilizing patchy feedback control.

3. The patchy domain decomposition. In this section we introduce our new
numerical method for solving equations of Hamilton–Jacobi–Bellman type. In par-
ticular we focus on the minimum time problem (1.1). The main feature of the new
method is the technique we use to construct the subdomains of the decomposition,
which are (approximate) patches in a sense inspired by the definitions of the previous
section. Indeed, we will see that these patches turn out to be (almost) invariant with
respect to the optimal dynamics driving the system, meaning that the optimal dy-
namics do not cross their boundaries. Even if this construction could lead to a rather
complicated domain decomposition, it has the clear advantage that we do not need
to apply any transmission condition between subdomains.

Let us introduce two rectangular (structured) grids. The first grid is rather coarse
because it is used for preliminary (and fast) computations only. It will be denoted by

G̃ and its nodes by x̃1, . . . , x̃ ˜N , where Ñ is the total number of nodes. We will denote

the space step for this grid by k̃ and the approximate solution of (1.1) on this grid

by ŨP .
The second grid is instead fine, being the grid where we actually want to compute

the numerical solution of the equation. It will be denoted by G and its nodes by
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x1, . . . , xN , where N is the total number of nodes (N � Ñ). We will denote the
space step for this grid by k and the solution of (1.1) on this grid by UP . We also
choose the number R of subdomains (patches) to be used in the patchy decomposition,
and we divide the target Ω0 into R parts denoted by Ωj

0, with j = 1, . . . , R.
The patchy method can be described as follows.
Patchy Algorithm.

Step 1. (Computation on G̃) We solve the equation on G̃ by means of the classi-
cal domain decomposition algorithm described in section 2.2. For coherence
we choose a (static) decomposition with R subdomains (as the number of

patches). This leads to the function ŨP .

Step 2. (Interpolation on G) We define the function U
(0)
P on the fine grid G by in-

terpolation of the values ŨP . Then we compute the approximate optimal
control

(3.1) a∗
˜k
(xi) = argmin

a∈A
{I[U (0)

P ](xi + hi,af(xi, a)) + hi,a} , xi ∈ G.

Even if a∗
˜k
is defined on G, we still use the subscript k̃ to stress that the

optimal control is computed using only coarse information. We delete G̃
and ŨP .

Step 3. (Main cycle) For every j = 1, . . . , R:
Step 3.1. (Creation of the jth patch) Using the (coarse) optimal control a∗

˜k
, we

find the nodes of the grid G that have the part Ωj
0 of the target in their

numerical domain of dependence. This procedure defines the jth patch,
naturally following the (approximate) optimal dynamics. This step will
be detailed later in this section.

Step 3.2. (Computation in the jth patch) We iteratively apply the scheme (2.2) in
the jth patch until convergence. Boundary conditions will be discussed
later in this section.

Step 4. (Merging) All the solutions are merged together. This leads to the final
solution UP .

Details on Step 3.1. The basic idea we adopt here is dividing the whole domain
starting from a partition of the target only, and letting the dynamics make a partition
of the rest of the domain (see [12] for a similar idea in the context of parallelization of
the Fast Marching method for the Eikonal equation). More precisely, once the target
Ω0 is divided into R parts, we associate each part to a color indexed by a number
j = 1, . . . , R. Assume, for instance, that Ω0 is a ball at the center of the domain, and
focus on the subset of the target with a generic color j, denoted by Ωj

0; see Figure

3.1(a). The goal is finding the subset of the domain Ω which has Ωj
0 as numerical

domain of dependence. First, we initialize the grid nodes with the values φi as follows:

φi =

{
1, xi ∈ Ωj

0 ∩G,
0, xi ∈ G\Ωj

0,
i = 1, . . . , N.

Then, employing the approximation of the optimal control given by a∗
˜k
, we solve the

following ad hoc discrete equation:

(3.2) φi = I[φ](xi + hif(xi, a
∗
˜k
(xi))), i = 1, . . . , N,

which is similar to the fixed-point scheme (2.1) for the main equation. Here hi > 0 is
chosen in such a way that |hif(xi, a∗

˜k
(xi))| = k. Once the computation is completed,



A PATCHY DP SCHEME FOR HJB EQUATIONS A2633

(a) (b)

(c) (d)

Fig. 3.1. Creation of patches for a test dynamics, R = 4, Ω0 = small ball in the center:
(a) Select a subdomain Ωj

0 of the target Ω0. (b) Find the nodes which depend, at least partially, on

Ωj
0. (c) Define Ωj projecting the color in a binary value. (d) Assemble all patches.

the whole domain will be divided into three zones:

Λj
1 = {xi : φi = 1} , Λj

2 = {xi : φi = 0} , Λj
3 = {xi : φi ∈ (0, 1)} ;

see Figure 3.1(b). Note that Λj
3 will be nonempty because the interpolation operator I

in the scheme (3.2) mixes the values φi through a convex combination, thus producing
values in [0, 1] even if the initial datum is in {0, 1}. Since we need a sharp division of
the domain, we “project” the color j into a binary value

(3.3) φ̂i =

{
1, φi ≥ 1

2 ,

0, φi <
1
2 ,

i = 1, . . . , N,

and then we define the subdomain Ωj = {xi ∈ G\Ωj
0 : φ̂i = 1} as the jth patch; see

Figure 3.1(c). Once all the patches j = 1, . . . , R are computed, they are assembled
together on the grid G. Thus the grid ends up being divided into R patches, each
associated to a different color, as shown in Figure 3.1(d).

The main point here is that patches Ωj are constructed to be invariant with
respect to the optimal dynamics, meaning that the solution of the equation in each
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patch will not depend on the solution in other patches. This is equivalent to stating
that there is no information crossing through the boundaries of the patches.

We stress that Step 3.1 of the algorithm is not expensive, even if it is performed
on the fine grid G. The reason for this is the employment of the precomputed opti-
mal control a∗

˜k
in (3.2), which avoids the evaluation of the minimum (see the scheme

(2.2)). Moreover, the stop criterion for the fixed-point iterations used to solve (3.2)
can be very rough, since we project the colors at the end and then we do not need
precise values.

Details on boundary conditions. In Step 3.2 of the algorithm, the computation
of the value function is performed independently in each patch; thus we have to
impose boundary conditions on the boundaries of the patches. A natural choice is

the employment of U
(0)
P (obtained in Step 2) as Dirichlet boundary condition, but

in some early tests [30] we observed that this choice leads to reasonable results for
UP even if the domain decomposition is completely incorrect (i.e., patches are not
at all invariant). More precisely, if the decomposition is not invariant, the accuracy

of the final solution UP is comparable to that of U
(0)
P ; otherwise it is comparable to

that of UDD computed on the same fine grid (which is the best one can do). This
point will be discussed later in section 4.2. As a first study we prefer to impose a
boundary condition which does not require any a priori information on the solution
outside the patches, in order to check whether they are genuinely independent. This
motivated us to use state constraint boundary conditions, which force the optimal
direction f(xi, a

∗
k) to point inside the patch (see Figure 3.2 and its caption). This

choice produces an error that can be evaluated comparing UP with UDD and that we
consider as a degree of invariance of the patchy decomposition.

f(xi, a
∗
˜k
(xi))

xi

+∞

f(xi, a
∗
k(xi))

xi

(a) (b)

Fig. 3.2. (a) Discretization versus decomposition invariance: The node xi belongs to the dark
gray patch, but it is influenced by the light gray patch (through the coarse control a∗

˜k
(xi)). (b) The

cure: State constraint boundary conditions force the patches to be completely independent but change
the optimal vector field f(xi, a∗k(xi)), producing an error in the final solution.

Let us remark that once we have shown that patches are actually (almost) in-
variant, we can impose Dirichlet boundary conditions, further improving the quality
of the solution. This also allows one to handle the case of dynamics such that state
constraint condition cannot be satisfied everywhere (i.e., there is no control allowing
the state to remain in the patch), as in the example discussed in section 4.6.
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Remark 3.1 (patches as a partition of G). We have no guarantee that patches
Ωj do not overlap or that they cover the whole domain. On the overlapping zones we
can simply choose a color at random. Instead, if they do not cover all the domain, we
can repeat the computation in the uncolored nodes by relaxing the condition in (3.3),
i.e., choosing a different value for 1/2. Alternatively, in the case of isolated uncolored
points, we can assign to them the color of their neighbors.

How to parallelize the algorithm. The patchy algorithm can be parallelized
in two ways.

• Method 1. Patches are processed one after the other, and the computation in
each patch is parallel, assigning a batch of nodes to each processor.
• Method 2. Patches are distributed among processors, and the computation of
each patch is serial.

The first strategy is designed for shared-memory architectures and gives priority to
saving CPU time, while the second strategy is designed for distributed-memory archi-
tectures and gives priority to saving memory allocation. The difference in CPU time
comes from the fact that, using the first method, processors are active all the time,
while, using the second method, it can happen that one processor finishes its jobs and
there are no more patches to be computed, so it remains idle. We stress again that,
employing Method 2, the independence of the patches allows processors to not com-
municate until the end of their task, saving heavy overhead in distributed-memory
architectures.

All tests presented in this paper are performed by implementing Method 1 on a
shared-memory architecture, and in the following we will always refer to this choice.

4. Numerical investigation in two dimensions. In this section we first list
the dynamics considered for the numerical tests. Then we investigate the optimality
of the patchy decomposition and the performance of the algorithm with respect to
the classical domain decomposition.

Numerical tests were performed on a server Supermicro 8045C-3RB using 1 CPU
Intel Xeon Quad-Core E7330 2.4 GHz with 32 GB RAM, running under the Linux
Gentoo operating system.

4.1. Choice of benchmarks. We will test the method described above against
three minimum time problems of the form (1.1). They are listed in Table 4.1. The
numerical domain is Ω = [−2, 2]2 for all tests. In Figure 4.1 we show the patchy

decomposition for the three dynamics described above in the case R = 8, Ñ = 502,
and N = 1002. The number of points used for discretizing A is Nc = 32. We also
superimpose the coarse optimal vector field f(x, a∗

˜k
) to show that patches are (almost)

invariant with respect to the optimal dynamics. Indeed, only a few arrows cross from
one patch to another, which is exactly the case discussed in Figure 3.2(a). Note that
patches cover the whole domain, but in general they are not equivalent in terms of area,
even if the target Ω0 was divided into R = 8 equal parts to generate the decomposition.

Table 4.1

Two-dimensional numerical tests.

Name d f(x1, x2, a) A Ω0

Eikonal 2 a B2(0, 1) B2(0, 0.5)

Fan 2 (|x1 + x2|+ 0.1)a B2(0, 1) {x1 = 0}
Zermelo 2 2.1a+ (2, 0) B2(0, 1) B2(0, 0.5)
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(a) (b)

(c) (d)

Fig. 4.1. Patchy decompositions with R = 8, Nc = 32, ˜N = 502, and N = 1002. For
visualization purposes not all the arrows are shown. (a) Eikonal, (b) Fan, (c) Zermelo, (d) a detail
of Fan.

4.2. Optimality of the patchy decomposition. In this section we compare
the solution UP of the patchy algorithm with that of the classical domain decompo-
sition method UDD, both computed on the same fine grid by means of the scheme
(2.2). Let us denote by E the difference

E := UP − UDD,

which in the following will be referred to as patchy error. In particular we study the
quantities

E1 :=
1

N

N∑
i=1

|Ei| and E∞ := max
i=1,...,N

|Ei|

as the grid nodes Ñ and N change. Error E is exclusively due to the fact that patches
are not completely dynamics-invariant, and then it will be considered as a degree of the
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Table 4.2

Patchy error E1 (E∞). Dynamics: Eikonal, Nc = 32, R = 16.

N = 502 N = 1002 N = 2002 N = 4002 N = 8002

˜N = 502
0.02725
(0.960)

0.01719
(1.856)

0.00637
(0.048)

0.00406
(0.034)

0.00300
(0.026)

˜N = 1002 –
0.00550
(0.046)

0.00181
(0.023)

0.00087
(0.042)

0.00031
(0.008)

˜N = 2002 – –
0.00237
(0.029)

0.00075
(0.013)

0.00025
(0.008)

˜N = 4002 – – –
0.00069
(0.016)

0.00037
(0.010)

˜N = 8002 – – – –
0.00025
(0.008)

Table 4.3

Patchy error E1 (E∞). Dynamics: Fan, Nc = 32, R = 16.

N = 502 N = 1002 N = 2002 N = 4002 N = 8002

˜N = 502
0.08706
(3.023)

0.00769
(1.507)

0.00231
(0.315)

0.00106
(0.263)

0.00069
(0.263)

˜N = 1002 –
0.00712
(1.502)

0.00200
(0.149)

0.00069
(0.095)

0.00037
(0.095)

˜N = 2002 – –
0.00200
(0.111)

0.00069
(0.061)

0.00025
(0.037)

˜N = 4002 – – –
0.00069
(0.079)

0.00025
(0.037)

˜N = 8002 – – – –
0.00025
(0.037)

Table 4.4

Patchy error E1 (E∞). Dynamics: Zermelo, Nc = 32, R = 16.

N = 502 N = 1002 N = 2002 N = 4002 N = 8002

˜N = 502
0.01069
(0.293)

0.00994
(0.059)

0.00606
(0.057)

0.00162
(0.027)

0.00037
(0.016)

˜N = 1002 –
0.00631
(0.063)

0.00206
(0.041)

0.00069
(0.023)

0.00025
(0.016)

˜N = 2002 – –
0.00244
(0.039)

0.00075
(0.023)

0.00025
(0.016)

˜N = 4002 – – –
0.00069
(0.020)

0.00031
(0.015)

˜N = 8002 – – – –
0.00025
(0.016)

invariance of the patchy decomposition. Let us stress that we employ state constraint
boundary conditions, as discussed in the previous section (see Figure 3.2(b)).

We report the results for R = 16, which is the largest number of patches and also
the worst case we tested. Indeed, error E necessarily increases as R increases because
the number of boundaries increases. Results for the three dynamics are shown in
Tables 4.2–4.4.

We see that the first row of each table (Ñ = 502) reports in some cases un-

satisfactory results caused by the excessive roughness of the grid G̃. Even the case
Ñ = N = 502 (i.e., the grid is not refined at all) is not satisfactory. This can be

explained by recalling that, even if Ñ = N , the computations on the two grids are
not identical because the second one employs state constraint boundary conditions.
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In the other cases, the behavior of the error is very good because it decreases as N
increases (for any fixed Ñ). As pointed out in section 3, if the patches were not invari-
ant with respect to the dynamics, as in the classical domain decomposition algorithm,
we would not expect such a behavior here, because of the missing information across
the patches. Thus, this shows that our patches are actually (almost) independent.

Tables 4.2–4.4 also show that the E∞ is always larger than E1, meaning that
the error is concentrated in small regions. Indeed, quite often we find a very small
number of nodes with a large error near the boundaries of the patches, especially at
those nodes where two patches and the target meet. This mainly affects E∞ but not
E1. Finally we note that the results are similar for the three dynamics, showing a
good robustness even for highly rotating vector fields like that of Fan dynamics.

Figures 4.2(a)–(c) report the function E for the three tests, showing one of the
most interesting features of the new method, i.e., the patchy error is concentrated
along the boundaries of the patches and does not propagate in the interior. In the
Eikonal and Zermelo cases the error starts from the target and increases as long as
characteristics go away. In the Fan case, on the other hand, the largest error is found
where patches and the target meet. Note that in the Eikonal case (Figure 4.2(a))

(a) (b)

(c) (d)

Fig. 4.2. Patchy error E, ˜N = 502 → N = 1002 for (a) Eikonal, (b) Fan, (c) Zermelo. In (d)
we show a detail of the patchy decomposition for the Fan dynamics, together with the optimal vector
field f(x, a∗k) computed by means of the final patchy solution UP .
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no error is found where patch boundaries are aligned to the grid, since the optimal
direction naturally points inside the patch and the state constraint boundary condition
has no effect. Figure 4.2(d) shows a detail of the Fan decomposition along with the
approximate optimal vector field computed by means of the final solution UP . The
effect of the state constraints is perfectly visible (arrows point unnaturally inward),
confirming the fact that each patch is computed independently.

Figure 4.3 shows the value function UP and its level sets for the Eikonal test.
Here we see small perturbations where patches meet. It is interesting to note that
they meet forming a hollow and not a discontinuity.

(a) (b)

Fig. 4.3. Patchy solution for the Eikonal dynamics. (a) Value function and (b) a detail of its
level sets. Small hollows are visible in correspondence of the lines {x = y} and {x = −y}; cf. Figure
4.2(a).

4.3. Comparison of CPU times. In this section we compare the patchy algo-
rithm with the classical domain decomposition algorithm in terms of CPU time. In
the case of parallel computation, we will always refer to the wall clock time, and not
to the sum of CPU times devoted to the task by each CPU running it.

Let us first explain why we expect that the patchy algorithm overcomes the do-
main decomposition algorithm, considering again the Eikonal case with R = 8; see
Figure 4.1(a). If we visit the nodes in a single predefined order (i.e., we do not im-
plement the fast sweeping technique [38] or similar ones), the eight subdomains need
a different number of iterations to reach convergence. This is due to the fact that for
some of them the visiting order corresponds to the upwind direction, while for the
other subdomains the visiting order corresponds to the downwind direction. If we do
not know a priori that the eight subdomains are invariant with respect to the opti-
mal dynamics, we cannot stop the computation in a subdomain before computations
in all subdomains are fully completed, because at any moment new information can
enter, making necessary new computations. On the contrary, if we know a priori that
subdomains do not depend on each other, we can safely stop the computation in a
subdomain as soon as the solution reaches convergence. Note that this argument is not
related to the parallelization and holds also if only one core is employed. In addition,
the higher the number of subdomains is, the more efficient is the computation.
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In Table 4.5 we report the execution times (in seconds) for the single steps of the
patchy algorithm. Times for Step 3.1 are the most interesting because this step is
expected to be the slowest one after Step 3.2 (main computation on the fine grid).
Thus, time spent in Step 3.1 could completely neutralize the advantage we hope to
get in the subsequent main computation. As we can see, Step 3.1 is much more costly
than Steps 1 and 2, but not so much compared with the main computation.

Table 4.5

CPU time. Cores: 4, Nc = 32, Grid: ˜N = 1002 → N = 8002, R = 16.

Step 1 Step 2 Step 3.1 (all j’s) Step 3.2 (all j’s)

Eikonal 2 1 23 409
Fan 2 2 52 796

Zermelo 2 1 30 512

Tables 4.6–4.9 report the CPU time (in seconds) for the three dynamics of Table
4.1 as a function of the number of cores (1, 2, 4) and the number of patches (R = 2, 4,
8, 16). They also report the speed-up (in parentheses) obtained by the parallelization
method, Method 1 (see section 3). For the Eikonal test we also vary the number
of discrete controls (Nc = 16 and 32). These results are compared with the best
outcome of the domain decomposition method obtained by varying the number of
domains (again 2, 4, 8, 16).1

Table 4.6

CPU time (speed-up). Dynamics: Eikonal. Nc = 16. Grid: ˜N = 1002 → N = 8002.

R = 2 R = 4 R = 8 R = 16 Best DD

1 core 1547 1076 1058 933 1571
2 cores 845 (1.83) 595 (1.81) 574 (1.84) 504 (1.85) 820 (1.92)
4 cores 459 (3.37) 325 (3.31) 317 (3.34) 271 (3.44) 415 (3.79)

Table 4.7

CPU time (speed-up). Dynamics: Eikonal. Nc = 32. Grid: ˜N = 1002 → N = 8002.

R = 2 R = 4 R = 8 R = 16 Best DD

1 core 2702 1897 1843 1623 2785
2 cores 1462 (1.85) 998 (1.90) 968 (1.90) 872 (1.86) 1430 (1.95)
4 cores 771 (3.50) 532 (3.57) 514 (3.59) 435 (3.73) 716 (3.89)

Table 4.8

CPU time (speed-up). Dynamics: Fan. Nc = 32. Grid: ˜N = 1002 → N = 8002.

R = 2 R = 4 R = 8 R = 16 Best DD

1 core 3712 3322 3049 3172 4163
2 cores 2020 (1.84) 1746 (1.90) 1596 (1.91) 1559 (2.03) 2124 (1.96)
4 cores 1032 (3.60) 900 (3.69) 841 (3.63) 852 (3.72) 1069 (3.89)

We see that the speed-up is very satisfactory and proves that the parallelization
method, Method 1, that we implement here is sound. Moreover, we see that the

1The CPU time of the domain decomposition method does not vary a lot when the number of
domains is varied, but small differences are present. They are due to the different order in which
nodes are visited and to the synchronization overhead at the end of each iteration.
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Table 4.9

CPU time (speed-up). Dynamics: Zermelo. Nc = 32. Grid: ˜N = 1002 → N = 8002.

R = 2 R = 4 R = 8 R = 16 Best DD

1 core 3113 2675 2126 2018 3209
2 cores 1651 (1.89) 1404 (1.91) 1111 (1.91) 1054 (1.91) 1640 (1.96)
4 cores 871 (3.57) 721 (3.71) 584 (3.64) 545 (3.70) 825 (3.89)

CPU time decreases remarkably as the number of patches R increases. For R = 16
the CPU time is considerably smaller than that of the best domain decomposition
method. This is one of the main results of the paper.

Differences among Nc = 16 and Nc = 32 are instead less clear, although the
patchy algorithm should have an advantage for large Nc because of the smaller ra-
tio between CPU time for Step 3.1 (one discrete control) and Step 3.2 (Nc discrete
controls).

Remark 4.1. The fast sweeping technique can mitigate the performances of the
patchy method, since it clears the differences between domains with the same number
of nodes, but it cannot neutralize them completely. Indeed, the patchy algorithm has
the clear advantage that no synchronization or crossing information among processors
is needed. This is a great advantage when using distributed-memory parallel comput-
ers (for which Method 2 is designed), where communications are performed via cables
connecting cluster nodes. This advantage is not really included in our experiments
because our cores share a common RAM.

4.4. Patchy method with obstacles. We have also tried to use the patchy
algorithm to solve a minimum time problem with Eikonal dynamics and obstacles.
In Figure 4.4 we show the obstacles (one circle and one rectangle), the level sets of
the solution, the patchy decomposition, and the patchy error E. The behavior of the
patchy decomposition is correct because the dynamics drives the patches around the
obstacles. If not influenced by the obstacles, the error is concentrated around the
boundaries of the patches as expected. Instead, when a boundary meets an obstacle,
the error can either stop propagating (see the circle) or spread out (see the rectangle,
right side).

(a) (b)

Fig. 4.4. Patches bypass the obstacles driven by the dynamics. (a) Obstacles (black), level sets
of the value function, and patchy decomposition. (b) Patchy error E.
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4.5. Limitations of the patchy method. The overall efficiency of the patchy
method depends on the dynamics and on the shape of the target Ω0. Unfortunately,
it is not always possible to get a suitable patchy decomposition which allows one to
run the algorithm. This can happen, for example, if the target is very small; then it
cannot be divided into R subdomains.

Another issue, much more difficult to fix, emerges whenever there is a large dif-
ference between the sizes of the patches and possibly some of them degenerate into a
subset of a few grid nodes. This is the case of the classical “lunar landing” problem

d = 2 , f(x1, x2, a) = (x2, a) , A = {−1, 1} , Ω0 = B2(0, ε).

In this case the patchy decomposition consists of two large domains and R−2 smaller
domains; see Figure 4.5(a). The small domains degenerate into sets of one dimension
when ε tends to zero, because all the optimal trajectories tend to meet in only two
switching lines.

(a) (b)

(c) (d)

Fig. 4.5. (a) Decomposition in R = 4 patches, (b) error function and level sets of the patchy
solution (the solution is truncated at value u = 3 in order to remove the boundary effects which are
very important for this dynamics), (c) patchy solution UP , (d) a detail of the error function shown
in (b).
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A third dangerous case arises when some regions in Ω0 are not reachable. If
the dynamics make it impossible to reach the target from some point x ∈ Ω, the
value function is set to u(x) = +∞. From the numerical point of view, the solution
stays frozen at the value given as initial guess. At these points the optimal control
(3.1) is not uniquely defined, and then the patchy decomposition cannot be built.
On the other hand, in the unreachable regions, the solution is in some sense already
computed; then the issue can be easily fixed by a slight modification of the algorithm.
After Step 1 we locate the regions where ŨP is very large, and then we do not consider
those regions in the rest of the computations.

4.6. Patchy decomposition for nontarget problems. In the case of non-
target problems we cannot in principle build the patchy decomposition. Indeed, we
recall that our patchy decomposition starts from a decomposition of the target Ω0.
Nevertheless, in some special situations it is still possible to achieve the patchy de-
composition, using some a priori knowledge of the solution of the problem. This is
the case of the infinite horizon problem associated to the linear-quadratic regulator,
studied by Krener and Navasca in [29] as a test for their patchy method (see also [28]
and the introduction for a brief description):

(4.1) min
a∈R

∫ ∞

0

(
1

2
(y21 + y22) +

1

2
a2
)
dt subject to

{
ẏ1 = y2,
ẏ2 = a

with y1(t = 0) = x1 and y2(t = 0) = x2. The exact value function for this problem is

u(x1, x2) =
1

2

(
x1
x2

)(√
3 1

1
√
3

)
(x1 x2),

and it is easy to check that the origin (0, 0) is the only source of all characteristic
curves. Then, using a small ball B2(0, ε) as a fictitious target, we are able to generate
the patchy decomposition and then run the algorithm normally. In Figure 4.5 we
show the outcome of the simulation with the following parameters: Ω = [−1, 1]2,
ε = 0.05, R = 4, Nc = 101, A = [−3, 3], Ñ = 1002, N = 2002. Note that the choice
R = 4 is due to limitations discussed in section 4.5. Moreover, we cannot impose
state constraint boundary conditions at the boundaries of the patches, since at some
nodes the dynamics in (4.1) do not point inside the patch to which they belong for

any a ∈ A. As already discussed in section 3, this issue is solved by using U
(0)
P as

Dirichlet boundary condition:

(4.2) UP |∂Ωj = U
(0)
P |∂Ωj , j = 1, . . . , R .

Patchy errors are E1 = 0.00012 and E∞ = 0.009. Note that they are generally
smaller than those in Tables 4.2–4.4 (computed for other dynamics) because of the
more favorable boundary condition (4.2).

5. Patchy method’s add-ons. The patchy algorithm proposed in section 3 has
a multigrid nature, meaning that the computation of the solution on a rough grid is
needed to start the optimal domain decomposition. Once this preliminary effort is
done, it appears to be natural to use all the information we have collected in order to
speed up the algorithm. First, in the next tests we impose by default the boundary
condition (4.2) (note that it becomes available only after the computation on the
rough grid). Further multigrid advantages we can take into account are listed in the
following:



A2644 S. CACACE, E. CRISTIANI, M. FALCONE, A. PICARELLI

AO1. We use U
(0)
P computed in Step 2 as initial guess for Step 3.2. In this way we

save some iterations to reach convergence.
AO2. Before Step 3.2 we order the nodes belonging to each patch in such a way

that they fit as closely as possible the causality principle [34]. For example,
we can order the nodes with respect to their values. This ordering is optimal
if the characteristic lines coincide with the gradient lines of the solution, as
happens in the case of the Eikonal equation. In general this is not true; in
any case, this ordering is often not too far from the optimal one.

AO3. In Step 3.2 we reduce the number of discrete controls used in the numeri-
cal scheme, eliminating those controls which are “far” from the optimal one
a∗
˜k
(xi) as computed by the first computation on the rough grid (Step 2). For

example, if A = B2(0, 1), we can introduce a reduction factor r > 1 and
replace A with the set

Ar =
{
a ∈ A : a · a∗

˜k
≥ cos

(π
r

)}
.

This is the only add-on which introduces a new error in the solution; in any
case, it is negligible in most cases.

We point out that the patchy method can easily become an actual multigrid
method. Indeed, we can in principle repeat the algorithm introducing a sequence
of grids G1, G2, . . . , each finer than the previous one, until the desired precision is
reached.

In order to study the effect of the previously described add-ons, we introduce
them separately and compare the CPU times with that of the basic algorithm. Then,
we apply all the features together. Results are reported in Table 5.1.

Table 5.1

Effects of add-ons. Cores: 2, R = 8, Nc = 32. Controls reduced by a factor of 4.

Dynamics Grid size Basic AO1 AO2 AO3 AO1 + AO2+ AO3

Eikonal 1002 → 2002 20.0 19.2 9.6 9.1 5.7

Eikonal 1002 → 4002 130.7 130.2 40.5 43.6 17.8

Eikonal 1002 → 8002 928.1 924.6 238.8 298.1 100.6

Fan 1002 → 2002 31.9 31.0 11.4 14.0 7.6

Fan 1002 → 4002 209.8 205.7 43.5 72.3 20.6

Fan 1002 → 8002 1571.9 1564.0 247.3 529.6 110.6

Zermelo 1002 → 2002 23.2 22.6 11.5 10.7 6.7

Zermelo 1002 → 4002 143.5 142.4 46.2 51.0 20.3

Zermelo 1002 → 8002 1071.4 1057.9 290.1 345.5 111.3

Note that CPU times for this test are lower than those in section 4.3 because of
the more favorable boundary condition (4.2).

6. Numerical tests in three dimensions. We solve the three-dimensional
(3D) minimal time problems of the form (1.1) listed in Table 6.1. The numerical
domain is Ω = [−2, 2]3 for all tests. For the first two tests we used Nc = 189 discrete
controls uniformly distributed on the unit sphere,2 while for the last test we used
only Nc = 9 discrete controls in {−5, 0, 5}2. The latter choice is motivated by the fact
that using a larger number of discrete controls in [−5, 5]2 does not lead to a different

2In order to define a uniform distribution of discrete controls on the unit sphere, we used the
vertices of a geosphere obtained by recursion starting from an icosahedron.
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Table 6.1

3D numerical tests.

Name d f(x1, x2, x3, a) A Ω0

Eikonal 3D 3 a B3(0, 1) B3(0, 0.5)

Fan 3D 3 (|x1 + x2 + x3|+ 0.1)a B3(0, 1) {x1 = 0}
Brockett 3D [8, 27] 3 (a1, a2, x1a2 − x2a1) [−5, 5]2 B3(0, 0.25)

Table 6.2

3D tests. Cores: 4, R = 8. Add-ons enabled (Eikonal and Fan: controls reduced by a factor of
4; Brockett: not reduced).

Dynamics Grid size CPU time E1 E∞
Eikonal 3D 503 → 1003 183 0.00052 0.035

Eikonal 3D 503 → 2003 1217 0.00045 0.042

Fan 3D 503 → 1003 165 0.00100 0.187

Fan 3D 503 → 2003 1269 0.00087 0.305

Brockett 3D 503 → 1003 132 0.00358 0.024

Brockett 3D 503 → 2003 1557 0.00258 0.020

Fig. 6.1. One level set of the value function for the Eikonal 3D dynamics.

result, since the optimal strategy always requires one to saturate the control to the
extremal admissible values (±5 in this case).

Results are reported in Table 6.2. Considering the large number of discrete con-
trols used for Eikonal 3D and Fan 3D, the CPU time is remarkable. Figure 6.1 shows
a level set of the value function for the Eikonal 3D dynamics. It is perfectly apparent
that error is located where the patches meet. Figure 6.2 shows instead the results for
Fan 3D with 2003 nodes. In Figures 6.2(a) and 6.2(b) we show the boundaries of the
patches and some level sets of the solution, respectively. Level sets should be planes,
but the state constraints imposed by the computational box Ω bend them near ∂Ω.
In Figure 6.2(c) we show some optimal trajectories to the target.
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(a) (b)

(c)

Fig. 6.2. Fan 3D: (a) Decomposition with 8 patches, (b) level sets of the solution, and (c) some
optimal trajectories to the target.

Results for the Brockett problem are different from those of the previous tests.
First, CPU time turns out to be high with respect to the small number of discrete
controls in use (just Nc = 9 controls). This could be related to the fact that charac-
teristics are broken lines (see Figure 6.3(c)) that neither go directly to the target, as
in the Eikonal equation, nor bend slightly as for the Fan dynamics (see Figure 6.2(c)).
Instead, they change direction instantaneously (see also control switch regions in Fig-
ure 6.3(b)), so that this dynamics takes much more time to move information through
the domain. Second, the patchy error E1 is quite large if compared to the other dy-
namics (see Table 6.2). This depends on the fact that the patchy decomposition
obtained for this dynamics is rather complicated (see Figure 6.3(a)); in particular,
patches arrange themselves in (suggestive) sets with very large boundary areas, and
this increases the number of nodes with large error E.
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(a) (b)

(c)

Fig. 6.3. Brockett 3D: (a) Decomposition with 8 patches, (b) regions with constant optimal
controls, and (c) some optimal trajectories to the target.

Concluding remarks and future directions. In this paper we have proposed
a new numerical method for optimal control problems which tries to mimic the “patchy
decomposition” proposed by Ancona and Bressan [2]. We have investigated the serial
implementation of the algorithm as well as one of the possible ways to parallelize it
(Method 1), particularly suitable for shared-memory architectures. The new method
is shown to be faster than the classical domain decomposition algorithm, since it
avoids useless computations at nodes that have already reached convergence. At
present, the main drawback of our approach is the fact that we have almost no control
over the size of the patches, which depends only on the initial partition of the target
and the dynamics.

Many points need to be investigated in the near future. The first is the paral-
lelization on distributed-memory architectures, where patches are processed in parallel
(Method 2). Moreover, we plan to improve the dynamics-dependent decomposition
in such a way that the size of the patches is controllable. Finally, we aim at obtaining
a convergence result for the scheme and, possibly, an a priori estimate for the patchy
error. These results, coupled with the previous results by Ancona and Bressan, will
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produce a constructive provably convergent method for some classes of optimal control
problems.
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H. Poincaré Anal. Non Linéaire, 24 (2007), pp. 279–310.

[5] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser Boston, Boston, 1997.
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