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REDUCING COMPLEXITY OF MULTIAGENT SYSTEMS WITH
SYMMETRY BREAKING: AN APPLICATION TO OPINION

DYNAMICS WITH POLLS∗

EMILIANO CRISTIANI† AND ANDREA TOSIN‡

Abstract. In this paper we investigate the possibility of reducing the complexity of a system
composed of a large number of interacting agents, whose dynamics feature a symmetry breaking.
We consider first order stochastic differential equations describing the behavior of the system at
the particle (i.e., Lagrangian) level and we get its continuous (i.e., Eulerian) counterpart via a
kinetic description. However, the resulting continuous model alone fails to describe adequately
the evolution of the system, due to the loss of granularity which prevents it from reproducing the
symmetry breaking of the particle system. By suitably coupling the two models we are able to
reduce considerably the necessary number of particles while still keeping the symmetry breaking and
some of its large-scale statistical properties. We describe such a multiscale technique in the context
of opinion dynamics, where the symmetry breaking is induced by the results of some opinion polls
reported by the media.
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1. Introduction. In this paper we investigate the possibility of reducing the
complexity of a system composed of a large number of interacting agents with sym-
metry breaking. More specifically, we assume that the agents are subject to aggregate
stimuli which trigger a loss of symmetry of the particle dynamics.

It is well known that the numerical approximation of multiagent systems becomes
rapidly infeasible when the number of the agents increases, especially when all-to-all
interactions are considered. The problem is commonly solved by assuming that the
agents are indistinguishable, whereby continuous descriptions are derived in the limit
of an infinite number of particles. Nevertheless this approach is not always suitable
because it loses completely the particle granularity, which may instead play a role in
the dynamics of the original system especially when the number of particles is large
but finite.

Generally speaking, in the following we consider an interacting particle system
with the following characteristics:

• The original full particle model is not directly amenable to numerical compu-
tations due to the extremely high number of agents, which implies an excessive
computational cost.

• A particle model with a significantly reduced number of agents departs too
much from the actual results.
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• The corresponding averaged continuous model cannot describe adequately
the system due to the loss of granularity, which is instead assumed to play a
crucial role in the dynamics.

We tackle the modeling of such a system by coupling the particle and continuous
descriptions in such a way that the latter accounts for most of the agents that are
not explicitly tracked in a suitably reduced version of the former and, at the same
time, it does not lose the proper contribution of the particle granularity. This method
takes inspiration from the multiscale technique first proposed in [20], then extended
in [19, 21, 22], and subsequently applied also in [12]. Such a method is character-
ized by the fact that a dual microscopic/macroscopic description of a certain particle
system is active at all times in the whole domain, with the two scales continuously
complementing each other. It is worth stressing that in [20] the microscopic and the
macroscopic models are two copies of the same physical system. Instead, one of the
novelties of the approach proposed here is that some of the dynamical features of the
whole system are confined to either description and do not have a direct counterpart
in the other description. Typically this applies to those features mainly responsible
for the break of symmetry, which are retained only at the particle level. Most impor-
tantly, we also take full advantage of this multiscale approach to reduce the degrees
of freedom of the particle model, which represents the largest source of computational
cost.

Such a multiscale approach is investigated here with reference to a specific applica-
tion in the framework of opinion dynamics. We refer the reader to the surveys [3, 7, 15]
for an introduction to the topic. We consider a population of interacting individuals
who share their opinions about a binary voting choice, such as, e.g., “yes” or “no” in
a referendum. Furthermore, the individuals are exposed to a number of opinion polls,
whose results can impact on their opinions as well. This feature is mainly responsible
for the break of symmetry in the particle dynamics.

Like in the celebrated Hegselmann–Krause model [27], an opinion is described by
a real variable w. Specifically, we assume w ∈ [−1, 1], so that sgnw expresses the
intention of vote (for instance, we may admit that sgnw = 1 stands for “yes” while
sgnw = −1 stands for “no”) while |w| gives the degree of conviction.

Regarding the opinion dynamics we make the standard assumption that people
tend to compromise [15, 33]; cf. also [23]. This attitude is modulated by the radical-
ization of their opinion like in [18]. The interaction with the results of the opinion
polls follows a similar principle. However, in this case the individuals do not know
the opinions of the interviewed people singularly but only the global prevalence of
either voting option in the poll. Thus the results of the opinion polls are known only
in aggregate form. A similar feature is found in CODA models [16, 18, 29], where
people may see the final action of the others without any access to their real, possibly
nonsharp, opinion.

Unlike other models of opinion dynamics (cf., e.g., [2, 17, 24, 27]), we neglect
the bounded confidence constraint, namely, the fact that the individuals may refuse to
interact with people with opinions too far from their own. This is because we want to
consider scenarios in which one cannot fully choose who to interact with because one is
exposed to partly uncontrollable stimuli: newspapers, broadcasts, reader’s comments
in blogs on the Internet, and the like, where one can accidentally come into contact
also with opinions very different from the personal one.

From the technical point of view, we consider a mean-field-type particle descrip-
tion of the opinion dynamics. Next we reduce it to a binary interaction scheme for
short time intervals ∆t > 0 (see, e.g., [2, 14, 31]), whence we derive a Boltzmann-type
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kinetic description. Finally we pass to the limit ∆t → 0+ (quasi-invariant opinion
limit [33]), thereby recovering a Fokker–Planck continuous description of the orig-
inal mean-field particle model. Nevertheless, the contribution of the opinion polls
does not pass to the limit in order to maintain its intrinsically microscopic stocastic
features. This creates the necessity to couple the particle and the continuous descrip-
tions, which constitutes the core of the multiscale approach proposed in the paper.
It is worth anticipating that such a coupling involves also stochastic terms related to
the self-thinking of the individuals [8], which have to be handled carefully in order to
obtain a consistent multiscale description.

In more detail, the paper is organized as follows. In section 2 we introduce the
particle model and we discuss in particular the role of the opinion polls in producing
a break of symmetry in the opinion dynamics. In section 3 we detail the passage to
a continuous model by means of the aforesaid kinetic approach, keeping however a
particle description of the opinion polls. In section 4 we propose a hybridization of
a reduced version of the particle model with the continuous model, thereby creating
a coupled multiscale model. Such a hybridization aims, on one hand, at replacing
most of the particles with a continuous description by means of their probability
distribution function and, on the other hand, at retaining a proper (small) number
of them embedded in the continuous model in order to simulate reliably the opinion
polls. In section 5 we describe the numerical approximation of the multiscale model
and in section 6 we perform several numerical tests to show the performances of the
multiscale coupling in reducing the complexity of the full particle description. Finally,
in section 7 we draw some conclusions and briefly sketch research perspectives.

2. Particle-based microscopic modeling.

2.1. Basic opinion dynamics. We consider a system of N agents characterized
by their opinion wk, k = 1, . . . , N , which has to be understood as a function of time:
wk = wk(t) : [0, T ] → [−1, 1], where T > 0 is some fixed final instant, possibly
T = +∞. At each time, wk is assumed to belong to the bounded interval [−1, 1] with
the convention that sgnwk = ±1 identifies the binary option (e.g., “yes” or “no”)
that the kth voter supports while |wk| ∈ [0, 1] expresses his/her conviction for that
option.

Taking inspiration from [11, 33], we assume that the opinion wk changes in time
because of two basic mechanisms:

• the interaction with the opinions of the other agents;
• the self-thinking of the kth agent, which we interpret as a random walk in

the space of the opinions; see also [8].
In view of these assumptions, we write

(2.1) dwk = a(wk)

 1

N − 1

∑
h 6=k

I(wk, wh)dt+
√

2µdBkt

 , k = 1, . . . , N,

where
• a : [−1, 1] → R+ is a function expressing the propensity to change opinion.

We assume

(2.2) a(w) = 1− |w|δ, δ ≥ 1,

the underlying idea being that the more radical the opinion the lower the
propensity to change it.
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• I : [−1, 1]2 → R is a function modeling the interaction between two opinions.
According to the main trend in the reference literature [28, 33], I is usually
proportional to the relative opinion of the interacting agents,

(2.3) I(w, v) = α(v − w), α > 0,

meaning that interactions tend to lead mostly to a compromise; namely, the
postinteraction opinions are closer than the preinteraction ones.

• Bkt is, for every k = 1, . . . , N , a standard Brownian motion (Wiener process)
with independent Gaussian increments and µ > 0 is a constant. In particular,
Bkt+s − Bkt , s ≥ 0, has normal distribution N (0, s) with zero mean and
variance s, while Bkt , Bht are, for k 6= h and each t ≥ 0, independent and
identically distributed.

Remark 2.1. For the moment we deliberately neglect the question of whether the
solution wk to (2.1) belongs to the interval [−1, 1] for all t > 0. We simply mention
that a possible way to guarantee this property consists in replacing the Brownian
motion with a compactly supported zero-mean random fluctuation (for instance, a
truncated version of the Brownian motion itself) as is customary in models of opinion
dynamics; cf., e.g., [31, 33]. However, in the context of this paper such a procedure
is not really necessary, as we will see later after obtaining the continuous counterpart
of the model; cf. Remark 3.1.

2.2. The opinion poll. The basic opinion dynamics modeled by (2.1) may be
influenced, in the case of political campaigns, by the results of several opinion polls
performed before the vote to test the feelings of the voters.

A poll consists in interviewing a representative sample of voters about their cur-
rent voting intentions and then in processing statistically their answers to simulate
the distribution of the opinions in the whole population. The size of the sample which
guarantees a significant confidence level is in general a function of the total number
N of the individuals, which tends to saturate when N grows [34]. In order to get rid
of the uncertainty linked to the proper size of the sample, in our model we are going
to assume that all voters are interviewed in each poll, and hence the results of the
polls can be regarded as exact by definition.

Let {Ti}NP
i=1 be a set of times, 0 < Ti < Ti+1 < T all i, at which NP ≥ 1 polls

are performed. At each poll, the percentages of the interviewed individuals who are
in favor of either option are computed, that is, respectively,

P+
i :=

card{k ∈ {1, . . . , N} : wk(Ti) > W 0}
N

,

P−i :=
card{k ∈ {1, . . . , N} : wk(Ti) < −W 0}

N
,

W 0 ∈ [0, 1) being a “null threshold” such that if |wk| ≤W 0, then the kth individual
is regarded as indecisive and his/her opinion is not counted in either pool. Out of
them, we define the gap

Pi := P+
i − P

−
i ∈ [−1, 1],

which we assume to bias the opinions of the voters over a certain (usually short)
time period immediately after the release of the poll result. We model this effect by
assuming that Pi perturbs the null average of the self-thinking in (2.1),

(2.4) dwk = a(wk)

 1

N − 1

∑
h 6=k

I(wk, wh)dt+
√

2µdB̃kt

 , k = 1, . . . , N,
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where B̃kt is a new noise term for the kth individual with independent Gaussian
increments, such that B̃kt+s − B̃kt , s ≥ 0, has normal distribution with

(2.5) 〈B̃kt+s − B̃kt 〉 = β

∫ t+s

t

b(τ, {Pi}NP
i=1, wk) dτ, Var(B̃kt+s − B̃kt ) = s,

where 〈·〉 is the expectation and β > 0 is a constant. The function b models how the
self-thinking of the kth individual is biased on average over time by the results of the
various opinion polls and possibly also by his/her current opinion. Notice that if b
is independent of wk, then the noise B̃kt is actually the same for all individuals, i.e.,
it is independent of k as well. Several choices are conceivable for b. We consider in
particular the following two options,

b(t, {Pi}NP
i=1, wk) :=

NP∑
i=1

|Pi|ν(sgnPi − wk)η(t− Ti),(2.6a)

b(t, {Pi}NP
i=1, wk) :=

NP∑
i=1

|Pi|ν sgnPi η(t− Ti)(2.6b)

with ν > 0, where in both cases η : R → R+ is a function giving the duration in
time of the influence of a poll. We assume η(s) = 0 for s < 0, so that a poll has no
influence before the instant at which it is performed, and η → 0 sufficiently fast for
s→ +∞. For instance,

(2.7) η(s) :=
1

∆T
1[0,∆T ](s)

for a suitable choice of the parameter ∆T which defines the characteristic duration
of the effect of a poll. In the limit ∆T → 0+ we obtain η(s) = δ0(s), the Dirac delta
centered at the origin, indicating an impulsive poll.

The function (2.6a) expresses a drag of wk toward sgnPi, understood as represen-
tative of the prevailing binary option at the ith poll, modulated by |Pi|ν , which gives
the strength of the ith poll. The function (2.6b) expresses instead a bias of the average
self-thinking which depends only on the result of the polls and acts therefore equally
on all the voters. Notice that for η given by (2.7) and t ∈ R+ \∪NP

i=1[Ti, Ti+ ∆T ], i.e.,
in the time instants in which no poll has effect, both (2.6a) and (2.6b) imply b ≡ 0.
Hence in those instants B̃kt reduces to the standard Brownian motion like in (2.1).

2.3. The result of the vote. At time t = T the final vote takes place and its
result can be assessed similarly to each poll. Specifically, we define the percentages of
individuals who at last voted for either option:

V ± :=
card{k ∈ {1, . . . , N} : sgnwk(T ) = ±1}

N

and the corresponding gap

V := V + − V − ∈ [−1, 1].

3. From the particle to a continuous description.

3.1. Binary interaction dynamics. Taking inspiration from [2, 33], we con-
sider the dynamics (2.1) between two individuals k and h taking place in a short time
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∆t > 0. If we denote by w∗k = wk(t+∆t) the postinteraction opinion of the individual
k, then we deduce from (2.4)

(3.1) w∗k = wk + a(wk)
(
I(wk, wh)∆t+

√
2µ∆B̃kt

)
+ o(∆t).

Notice that, according to (2.5) together with a first order approximation of the integral
in time contained in 〈B̃kt+∆t − B̃kt 〉 under the conceivable assumption ∆t � ∆T , it
results that

∆B̃kt = B̃kt+∆t − B̃kt ∼ N
(
βb(t, {Pi}NP

i=1, wk)∆t+ o(∆t), ∆t
)
,

which can be normalized by defining the random variable

Z :=
∆B̃kt − βb(t, {Pi}

NP
i=1, wk)∆t+ o(∆t)√
∆t

∼ N (0, 1).

Taking this into account and assuming that in a large population the individuals are
mostly indistinguishable, (3.1) can be finally abstracted for two generic agents with
preinteraction opinions w, v as

(3.2) w∗ = w + a(w)
[(
I(w, v) +

√
2µβb(t, {Pi}NP

i=1, w)
)

∆t+
√

2µ∆tZ
]
,

where we have suppressed the term o(∆t) while still enforcing the equality.
The binary interaction rule (3.2) can be encoded in a Boltzmann-type kinetic

description of the system. To this end, we introduce the reference time scale of the
binary interactions,

(3.3) τ :=
t

∆t
,

where the characteristic time of a binary interaction becomes O(1), and we consider
the kinetic distribution function g = g(τ, w) such that g(τ, w)dw is the probability
that at time τ > 0 a generic individual has an opinion in [w, w + dw]. Consistently
with (3.2), the function g satisfies the following Boltzmann-type equation (cf. [31]):

(3.4)
d

dτ

∫ 1

−1

ϕ(w)g(τ, w) dw =

〈∫ 1

−1

∫ 1

−1

(ϕ(w∗)− ϕ(w)) g(τ, w)g(τ, v) dw dv

〉
for every test function ϕ : [−1, 1]→ R. Here 〈·〉 denotes the expectation with respect
to the (independent) random variable Z appearing in (3.2).

3.2. Fokker–Planck asymptotic analysis. Equation (3.4) is a high-resolution
one in time, because it describes the evolution of g subject to binary interactions on
the short τ -scale. Actually, such a detail is not needed to depict the collective trends
of the system, also in view of the mean-field nature of the interactions in the original
particle model (2.1). With this in mind, (3.4) can be profitably used to extract the
principal part of the interactions directly on the coarser t-scale.

To this purpose, invoking (3.3) we scale the kinetic distribution function as

f(t, w) := g(t/∆t, w).

Clearly,
∫ 1

−1
f(t, w) dw = 1 while ∂tf = 1

∆t∂τg. By evaluating the right-hand side
of (3.4) for τ = t/∆t it follows then that f satisfies the equation

(3.5)
d

dt

∫ 1

−1

ϕ(w)f(t, w) dw =
1

∆t

〈∫ 1

−1

∫ 1

−1

(ϕ(w∗)− ϕ(w)) f(t, w)f(t, v) dw dv

〉
.
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We observe from (3.2) that w∗ − w = O(
√

∆t). Since ∆t is small, if we take ϕ
sufficiently smooth, with moreover ϕ(±1) = ϕ′(±1) = 0, we can expand

ϕ(w∗)− ϕ(w) = ϕ′(w)(w∗ − w) +
1

2
ϕ′′(w)(w∗ − w)2 +

1

6
ϕ′′′(w̄)(w∗ − w)3,

where w̄ is a point such that min{w, w∗} < w̄ < max{w, w∗}. Substituting the
expression of w∗ and plugging into (3.5) we obtain

d

dt

∫ 1

−1

ϕ(w)f(t, w) dw

=

∫ 1

−1

∫ 1

−1

ϕ′(w)a(w)
(
I(w, v) +

√
2µβb(t, {Pi}NP

i=1, w)
)
f(t, w)f(t, v) dw dv

+ µ

∫ 1

−1

ϕ′′(w)a2(w)f(t, w) dw +R(∆t),(3.6)

the remainder R being

R(∆t) :=
∆t

2

∫ 1

−1

∫ 1

−1

ϕ′′(w)a2(w)
(
I +

√
2µβb

)2

f(t, w)f(t, v) dw dv

+

√
∆t

6

〈∫ 1

−1

∫ 1

−1

ϕ′′′(w̄)a3(w)H3f(t, w)f(t, v) dw dv

〉
,

where we have denoted H :=
√

∆t
(
I +
√

2µβb
)

+
√

2µZ for brevity. Since

|R(∆t)| ≤ ∆t

2
C2‖a‖2∞‖ϕ′′‖∞ + ∆t‖a‖3∞

(
∆t

6
C2 + µ

)
C‖ϕ′′′‖∞,

where C := ‖I‖∞ +
√

2µβ‖b‖∞, we deduce R(∆t)→ 0 for ∆t→ 0+. In such a limit
we obtain from (3.6)

d

dt

∫ 1

−1

ϕ(w)f(t, w) dw

=

∫ 1

−1

∫ 1

−1

ϕ′(w)a(w)
(
I(w, v) +

√
2µβb(t, {Pi}NP

i=1, w)
)
f(t, w)f(t, v) dw dv

+ µ

∫ 1

−1

ϕ′′(w)a2(w)f(t, w) dw,(3.7)

which, since ϕ, ϕ′ vanish for w = ±1, is a weak form of

(3.8) ∂tf + ∂w(K[f ]f) = µ∂2
w(a2(w)f),

where

(3.9) K[f ] = K[f ](t, w) := a(w)

(∫ 1

−1

I(w, v)f(t, v) dv +
√

2µβb(t, {Pi}NP
i=1, w)

)
is the rate of change of the opinion w due to the interactions with other agents and
with the results of the opinion polls.

Equation (3.8) is the Fokker–Planck approximation of the Boltzmann equation
(3.4) on the coarser t-scale, where the collective mean-field outcome of the binary
interactions is directly observable. As such, it is directly comparable with (2.4) when
the total number N of the agents is sufficiently large.
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Remark 3.1 (mass conservation in the Fokker–Planck equation). Integrating (3.8)
with respect to w ∈ [−1, 1] we discover

d

dt

∫ 1

−1

f(t, w) dw +
[
K[f ]f

]1
−1

= µ
[
∂w(a2(w)f)

]1
−1
,

whence, since ∂w(a2(w)f) = a(w) (2a′(w)f + a(w)∂wf) with a′ ∈ L∞(−1, 1) for a(w)
given by (2.2) and recalling that a(±1) = 0,

d

dt

∫ 1

−1

f(t, w) dw = 0.

This indicates that if the initial distribution f0(w) := f(0, w) is such that supp f0 ⊆
[−1, 1] then supp f(t, ·) ⊆ [−1, 1] for all t > 0. Therefore, the bounds −1 ≤ w ≤ 1
are almost surely never violated.

4. Hybrid particle model and multiscale coupling. Model (2.4) consists of
N coupled ordinary differential equations. As already pointed out in section 3, such
a description may not be satisfactory when the total number N of the agents gets
large.

The corresponding continuous description provided by the Fokker–Planck equa-
tion (3.8) solves partly only this issue. In fact the advection term b(t, {Pi}NP

i=1, w) in
K[f ] still depends on the poll gaps Pi, which are intrinsically microscopic quantities.
Since the interaction with the polls is the main factor triggering the break of symme-
try in the particle dynamics, it is quite natural, and possibly also necessary, to keep
its description at the particle level. This is especially true if the number N is large
but finite for then, as recalled in the introduction, the particle granularity can possi-
bly play a nonnegligible role in the overall dynamics. Therefore solving directly (3.8)
is even less feasible than addressing system (2.4) alone; in fact the Fokker–Planck
equation is simply an additional equation to be coupled to the entire particle model.

In order to bypass these difficulties of the theory, we propose a multiscale approach
based on the hybridization of a reduced particle model, i.e., a model of type (2.4) with
N∗ � N agents, with the Fokker–Planck equation (3.8). The latter is meant to
replace the remaining larger part of the agents that are not represented individually.

As anticipated in the introduction, this method takes inspiration from the mul-
tiscale approach originally developed in [20, 22] for an integrated micro/macroscopic
representation of a particle system without noise. Here we adapt the technique by
including the diffusive contribution like in [19] and we evolve the whole approach
according to the ideas just outlined.

To begin with, from the computations made in section 3 we observe that we can
write

dB̃kt = βb(t, {Pi}NP
i=1, wk)dt+ dBkt ,

and thus (2.4) can be restated for the reduced population as

dwk = a(wk)

[(
1

N∗ − 1

N∗∑
h=1

I(wk, wh) +
√

2µβb(t, {Pi}NP
i=1, wk)

)
dt+

√
2µdBkt

](4.1)
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with k = 1, . . . , N∗ and

Pi =
card {k ∈ {1, . . . , N∗} : wk(Ti) > W 0}

N∗

− card {k ∈ {1, . . . , N∗} : wk(Ti) < −W 0}
N∗

.

In the sum at the right-hand side of (4.1) we have taken into account in particular
that I(wk, wk) = 0 according to (2.3).

In order to hybridize this model with the Fokker–Planck equation (3.8), we first
proceed to rewrite the latter in flux form so as to put in evidence a transport velocity
in the space of the opinions. We have

∂tf + ∂w

[(
K[f ]− µ∂wa2(w)− µa2(w)

∂wf

f

)
f

]
= 0,

whence we identify the diffusive contribution to the rate of change of f :

(4.2) D[f ](t, w) := µ

(
∂wa

2(w) + a2(w)
∂wf

f

)
= µa2(w)∂w log (a2(w)f).

Thus we are led to consider the Fokker–Planck equation in the conservative form

(4.3) ∂tf + ∂w((K[f ]−D[f ])f) = 0.

In order to embed the reduced microscopic model into this equation the idea is
to hybridize the drift and self-thinking terms in (4.1) with K[f ] and −D[f ], respec-
tively, from (4.3). Specifically, we consider a convex linear combination by means of
a parameter θ ∈ [0, 1]:

dwk =

[
θa(wk)

(
1

N∗ − 1

N∗∑
h=1

I(wk, wh) +
√

2µβb(t, {Pi}NP
i=1, wk)

)

+ (1− θ)K[f ](t, wk)

]
dt

+ Θ
√

2µa(wk)dBkt + (1−Θ) (−D[f ](t, wk)) dt(4.4)

for k = 1, . . . , N∗, where Θ ∼ Bernoulli(θ) is an independent random variable which
we use to hybridize the particle and continuous diffusive contributions. In Appendix A
we prove that this stochastic hybridization is indeed necessary for a consistent coupling
of the two diffusive contributions; see also [19].

In the hybrid equation (4.4) the N∗ agents of the reduced particle model (4.1)
are complemented with a continuous representation of the N −N∗ � N∗ agents not
modeled individually. On one hand, this allows one to compute correctly the results
{Pi}NP

i=1 of the polls at the particle level, which would not be possible using (4.1) alone
because of the lack of most of the agents of the population. On the other hand, the
correct computation of the Pi’s is crucial to obtain from (3.8)–(3.9) a reliable evolution
of f to be used in (4.4). Figure 1 illustrates the conceptual difference between this
multiscale approach and the unsatisfactory direct approach to the solution of (3.8)
mentioned at the beginning of this section.

In the following we will refer to (4.4) as the hybrid particle model (or the hybrid
particle equation) and to the coupled model (4.3)–(4.4) as the multiscale model.
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Fig. 1. Left: solving directly the Fokker–Planck equation (3.8) would require to solve in parallel
the full particle model (2.4) to obtain the poll gaps Pi. Right: the multiscale coupling between (4.3)
and (4.4) allows one to use a strongly reduced number of agents to compute the Pi’s.

5. Numerical approximation of the equations. We now describe the nu-
merical approximation of the multiscale model (4.3)–(4.4).

We approximate (4.3) via the standard first order upwind scheme after discretizing
the space of the opinions [−1, 1] in J > 0 cells

(5.1) Ej :=

[
Wj −

∆w

2
, Wj +

∆w

2

)
with ∆w := 2

J−1 , Wj := −1 + (j − 1)∆w, j = 1, . . . , J , and the time interval [0, T ]

in M > 0 instants tm := (m − 1)∆t, m = 1, . . . , M , with ∆t := T
M−1 . We refer the

reader to [32] for higher order numerical schemes for Fokker–Planck equations.
On the other hand, the hybrid particle equation (4.4) can be rewritten as

dwk =

[
θa(wk)

(
1

N∗ − 1

N∗∑
h=1

I(wk, wh) +
√

2µβb(t, {Pi}NP
i=1, wk)

)

+ (1− θ)K[f ](t, wk)

]
dt+

{√
2µa(wk)dBkt with probability θ,

−D[f ](t, wk)dt with probability 1− θ.
(5.2)

We discretize (5.2) on the same grid {tm}Mm=1 previously introduced via the strongly
consistent Euler scheme. A posteriori verifications guarantee that wk ∈ [−1, 1] at
every time step, consistently with the observations made in Remarks 2.1 and 3.1. For
θ = 1 we obtain also the discretization of the reduced particle model (4.1).

In the subsequent numerical simulations we will consider the form (2.2) of the
function a with δ = 1. With this choice it results that

D[f ](t, w) = µ

(
2(w − sgnw) + (1− |w|)2 ∂wf

f

)
.

6. Numerical tests. With the functions a, I given by (2.2), (2.3), the param-
eters accounting for the strength of the three main factors in (4.3)–(4.4), i.e., the
compromise, the polls, and the self-thinking, are

α (compromise), p :=
√

2µβ (polls), µ (self-thinking),

which we will vary in the next simulations together with a few other ones, such as,
e.g., N and N∗.
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Table 1
Model parameters for the numerical tests of section 6.

Parameter NP = 0, 1 NP = 2 Explanation Reference
T 0.2 0.8 Final time of the simulation section 2.1
α 8 8 Strength of the compromise (2.3)
p 0.2 0.2 Strength of the polls section 6
µ 0.5 0.5 Strength of the self-thinking section 2.1
δ 1 1 Exponent in the function a (2.2)
ν 1

2
1
2

Exponent in the function b (2.6a)
W 0 0.1 0.1 Threshold of indecisiveness section 2.2
T1 0.1 0.1 Time of the first poll section 2.2
T2 – 0.5 Time of the second poll section 2.2
∆T 0.05 0.05 Duration of a poll influence (2.7)
J 51 51 Grid nodes in [−1, 1] section 5
M 200 800 Grid nodes in [0, T ] section 5

We assume an interaction with the results of the polls of type (2.6a). In particular,
we consider different scenarios with NP = 0, 1, 2 polls. Initially the opinions {wk}N∗

k=1

are either randomly sampled from the uniform continuous density f0(w) = 1
21[−1, 1](w)

or evenly distributed in [−1, 1]. Notice that the latter is a quite artificial initial
condition for the particle model, which however can be expected to provide in general
a better agreement with the output of the continuous model with initial condition f0.
In fact it attenuates the impact of the granularity, which arguably is mainly influential
in less ordered particle configurations.

All model parameters are summarized in Table 1.

6.1. Scale comparison. Let us first illustrate the effect of the single terms
of the model (compromise, poll, self-thinking) without hybridization, i.e., N∗ = N
and θ = 1 in (5.2). In the following figures we show the trajectories t 7→ wk(t),
k = 1, . . . , N = 102, of the particle opinions for t ∈ [0, T ] and the final density
f(T, w) of the continuous model. The initial opinions wk(0) are taken evenly spaced
in [−1, 1].

Figure 2 shows the result of the simulation when only compromise among the
individuals is included in the model (p = µ = 0). Due to the symmetry of the initial
data, the interactions tend to move the agents toward a common opinion correspond-
ing to the average of the initial distribution (0 in this case). By increasing α we
observe a faster convergence.

Figure 3 shows the result of the simulation when only the self-thinking is included
in the model (α = p = 0). Opinions move away from the center and concentrate at
the boundaries. By increasing µ the radicalization is faster. Also in this case the
symmetry of the distribution is preserved in time.

Figure 4 shows the result of the simulation when only interactions and self-
thinking are included in the model (p = 0). Here we observe a balance between
the trends shown in Figures 2, 3.

Finally, Figure 5 shows the result of the simulation when all the terms are included
in the model. We observe here the break of symmetry caused by an opinion poll at
time T1 in which the option sgnP1 = 1 prevails. It is worth pointing out that the
continuous model can reproduce the break of symmetry thanks to the coupling with
the particle model through P1 in the term b(t, P1, w).

6.2. Scale comparison for increasing N . In the following tests we aim at
confirming numerically that the full particle model (2.4) with NP = 1 poll and without
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Fig. 2. Effect of the compromise alone (p = µ = 0). Top: the coefficient α is like in Table 1.
Bottom: the coefficient α is doubled.
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Fig. 3. Effect of the self-thinking alone (α = p = 0). Top: the coefficient µ is like in Table 1.
Bottom: the coefficient µ is doubled.

hybridization, that is, (4.1) with N∗ = N or equivalently (4.4) with N∗ = N and θ = 1,
converges to the continuous one (3.8) for increasing N . To this end we introduce the
empirical probability Ψm

j of finding the particle opinions in the cell Ej (cf. (5.1)) at
time tm ∈ [0, T ], i.e.,

Ψm
j :=

card{k ∈ {1, . . . , N} : wmk ∈ Ej}
N

, j = 1, . . . , J, m = 1, . . . , M,

whence we define the empirical probability density of the particle opinions at time tm
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Fig. 4. Effect of compromise plus self-thinking (p = 0).
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Fig. 5. Effect of the superposition of compromise, one poll, and self-thinking. Top: the param-
eters α, p, µ are like in Table 1. Bottom: the parameter p is increased tenfold. In the left panels,
the dashed vertical green lines display the time interval [T1, T1 + ∆T ] during which the poll result is
influential while the dashed horizontal purple lines identify the opinion interval [−W 0, W 0] of the
indecisive individuals discarded from the poll result P1.

as

Ψm(w) :=
1

∆w

J∑
j=1

Ψm
j 1Ej (w).

Figure 6 compares f(T, w) and ΨM (w) (recall that tM = T ) for increasing orders
of magnitude of N . It is quite evident that the two slowly converge to one another
when N grows.

As a further test, we also explore the convergence of the statistical distribution of
the final vote V ; cf. section 2.3. Figure 7 shows the histogram of V after 2 · 103 runs
of the particle model. The analogous quantity is computed also from the continuous
model as

V :=

∫ 1

0

f(T, w) dw −
∫ 0

−1

f(T, w) dw
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Fig. 6. Comparison between f(T, w) (solid blue line) and ΨM (w) (solid red line with bullets)
for increasing N .

Fig. 7. Histograms of the final vote V and of the opinion poll P1 for increasing N .

with obviously V ∈ [−1, 1]. In addition to that, the figure also displays the histogram
of P1, i.e., the result of the intermediate poll.

The histograms of V computed from the particle and the continuous model clearly
converge to the same profile as N increases. Parallelly, the histogram of P1 tends to
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a Dirac delta centered in w = 0, meaning that P+
1 and P−1 (cf. section 2.2) tend to

balance when N is large. Arguably, this is a consequence of the law of large numbers.
The convergence of the histograms of V is instead more subtle: since the continuous
model depends on the particles through P1, we infer that its trend is comparable with
that of the particle model only when P1 approaches its own asymptotic profile, which
happens precisely when N is large.

6.3. Multiscale model. Now we explore the possibility of reducing the number
of agents of the particle model, i.e., to take N∗ � N , while still keeping a good
agreement with the reference full particle model (2.4) thanks to the multiscale model
discussed in section 4. In essence, with the aid of the continuous model we want
to recover reliable statistics of the final vote V by tracking a much lower number of
individuals than the total size N of the population and using only them to perform
both the intermediate polls and the final evaluation of V .

In order to compare quantitatively the histograms of V computed with the vari-
ous models we evaluate the 1-Wasserstein distance of the corresponding normalized
profiles. Note that, in this context, the Wasserstein distance is preferable to any
Lp-distance and that it can be easily computed numerically in one dimension; see,
e.g., [10].

The reliability of the outcomes of the multiscale model with respect to the ref-
erence full particle model strongly depends on the value of the coupling parameter
θ. In the following tests we compute numerically, by means of the bisection method,
the value of θ which minimizes the 1-Wasserstein distance between the histograms
of V obtained from the reference full particle model and from the multiscale model,
respectively, within a fixed tolerance of 10−2. In practice we regard the full particle
model as an ideal “exact” target toward which to lead the more feasible multiscale
model, in which only part of the voters are tracked individually.

It is worth stressing that the choice of the best value of θ remains the main issue
of the proposed multiscale technique, since theoretical investigations do not provide
so far any a priori estimates. Nevertheless, the following tests give some insights into
the choice of θ even if the full particle model cannot be run at all because the number
N of particles is prohibitive.

Test 1 (one poll, evenly spaced initial opinions). We consider the full
particle model with N = 2000 agents and the reduced model with only N∗ = 400
agents. The initial opinions {wk(0)}k are taken evenly spaced in [−1, 1] in both
cases. Figure 8 shows the histograms of the final vote V after 104 runs for the
full particle model, the reduced model alone, and the hybrid particle model with
θ = 0.2. We stress that in the latter case the histogram of V is still computed out
of the N∗ particle opinions individually tracked by the hybrid particle model, i.e.,
without considering the contribution of the continuous density f . The value θ = 0.2
is found by minimizing the Wasserstein distance of the histograms of the reference full
particle model and the hybrid particle model. More precisely, the distance between
the histograms of the full particle and the reduced model alone is O(10−2) while
the distance between the histograms of the full particle and the optimally hybridized
particle model is O(10−3). Hence the multiscale model allows one to reproduce the
target histogram of V more accurately than the simpler reduced model alone, but still
tracking only 20% of the total number of particles.

Test 2 (one poll, random uniform initial opinions). Now we replicate Test
1 with a random uniform distribution of the initial opinions {wk(0)}k ⊂ [−1, 1] for
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Fig. 8. Test 1. Histograms of the final vote. Left: full particle model. Center: reduced model.
Right: optimally hybridized particle model (θ = 0.2). W1 indicates the 1-Wasserstein distance
between the histograms.

Fig. 9. Test 2. Histograms of the final vote. Left: full particle model. Center: reduced model.
Right: optimally hybridized particle model (θ = 0.1). W1 indicates the 1-Wasserstein distance
between the histograms.

both the full particle and the reduced model. Figure 9 is the counterpart of Figure 8
for this case. Notice that the optimal value of θ which minimizes the Wasserstein
distance of the histograms of the reference full particle model and the hybrid particle
model is now θ = 0.1. In particular, such a distance (O(10−3)) is again one order of
magnitude lower than the distance of the histograms of the full particle model and
the reduced model alone (O(10−2)).

It is worth pointing out that this test differs from the previous Test 1 only in the
choice of the wk(0)’s, yet the reference histograms of V are quite different in the two
cases (cf. Figures 8, 9 left). We observe, in particular, that the support of the reference
histogram is almost doubled in Test 2, which indicates a wider spread of the possible
outcomes of the vote. As a matter of fact no purely continuous model would be able to
catch the above difference in the wk(0)’s; in fact also the evenly spaced distribution in
[−1, 1] of Test 1 is a (very particular) sample from f0(w) = 1

21[−1, 1](w). Conversely,
by slightly retuning θ the multiscale model succeeds in approximating reliably the
reference histogram, thereby confirming that a small amount of particle granularity
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Fig. 10. Test 3. Histograms of the final vote. Left: full particle model. Center: reduced model.
Right: optimally hybridized particle model (θ = 0.2). W1 indicates the 1-Wasserstein distance
between the histograms.
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Fig. 11. Test 3. Left: the 1-Wasserstein distance between the histograms of V in the full
particle model and the hybrid particle model as a function of θ for fixed N , N∗. Right: the optimal
value of θ as a function of the reduced number N∗ of agents.

has to be retained in the dynamics to discriminate between microscopically different
scenarios which can give rise to macroscopically observable differences.

Test 3 (two polls). In this test we tackle the more challenging scenario of two
polls. We consider a reference full particle model with N = 104 agents and a reduced
model with only N∗ = 103 agents. Figure 10 shows the various histograms of the final
vote V after 104 runs. As can be seen, the reduced model alone is considerably far
from the reference particle model, while the optimally hybridized particle model with
θ = 0.2 gets very close to it. Specifically, the distance of the histograms of the full
particle model and the reduced model is O(10−1) while the distance between those of
the full particle model and the optimally hybridized particle model is O(10−3). Hence
in this case the multiscale model allows one to gain two orders of magnitude in the
distance from the reference model while still tracking only 10% of the total number
of particles.

Figure 11 shows, on the left-hand side, the Wasserstein distance between the
histograms of the full particle model and the hybrid particle model as a function of
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θ for this test. As can be noticed, this function is quite smooth and has in θ = 0.2
a unique global minimum. This confirms that the particle granularity cannot be
completely neglected in the dynamics. On the right-hand side, Figure 11 shows instead
the optimal value of θ as a function of N∗ for this test. As expected, such a function
is increasing since the richer of agents the hybrid particle model is, the smaller the
continuous correction it needs. Clearly, if N∗ = N no correction is needed and the
optimal θ is 1. Interestingly, from the graph we can also infer that if N∗ < 500,
then the hybrid particle model cannot be adequately corrected by the Fokker–Planck
equation. In fact the distance from the histogram of the full particle model is larger
than the selected tolerance 10−2 for every θ ∈ [0, 1].

7. Conclusions and future work. In this paper we have presented a multiscale
technique, stemming from the one that we already proposed in [20], to reduce the
number of particles in a multiagent system composed by a usually large but finite
number of interacting individuals. The idea is to replace most of the particles with
the continuous description of the system formally obtained for an infinite number of
agents. A certain much lower number of agents is however still tracked at the particle
level in order to preserve the necessary granularity, which can induce small-scale effects
of symmetry breaking with potential large-scale impact.

We have applied this technique to a model of opinion dynamics with polls. Here
the random and inhomogeneous granular distribution of the opinions is responsible
for a break of symmetry which propagates also to the more homogeneous collective
dynamics described at the continuous level. Numerical simulations show that, com-
pared to a genuine full particle model, our multiscale approach allows one to reduce
by up to 80-90% the number of particles to be tracked explicitly in order to obtain
qualitative and quantitative results in line with the expected ones. They also show
that the same result can instead not be obtained by either simply reducing the num-
ber of particles without multiscale coupling or dropping completely the particles and
sticking to a purely continuous model. This confirms that a minimum amount of
granularity is essential as a constitutive element of the system.

Possible extensions of the present work can take into account space dynamics, like
in [25], or the presence of social networks among the agents, like in [5, 6, 30], which
can possibly shape the opinion paths. In particular, the contacts of each individual,
which here we have disregarded in favor of an all-to-all interaction scheme, can pos-
sibly change in time on the basis of the evolution of the respective opinions. Even
more challenging, our multiscale technique may be used for the control of opinion
dynamics [4], possibly targeting only few individuals in the spirit of [1, 9, 13, 26].

Appendix A. Multiscale coupling of the diffusion terms. In this section
we analyze the multiscale coupling of the diffusion terms in (4.4). The goal is to
justify the stochastic form of that coupling in contrast to the deterministic one used
for the other terms of the equation. The forthcoming discussion also complements
the numerical results presented in [19] for a closely related case study.

Let us consider the stochastic differential equation

(A.1) dWt =
√

2µa(Wt)dBt

describing the microscopic self-thinking process of a single agent as introduced in (2.1).
From the classical Itô’s calculus it is well known that the Fokker–Planck equation
associated with (A.1) is

(A.2) ∂tφ = µ∂2
w(a2(w)φ),
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where φ = φ(t, w) : R+ × R → R+ is the probability density function of the random
variable Wt. Since a(±1) = 0, integrating (A.2) with respect to w ∈ [−1, 1] yields
d
dt

∫ 1

−1
φ(t, w) dw = 0. Thus if suppφ(0, ·) ⊆ [−1, 1], the bounds −1 ≤ w ≤ 1 are

almost surely never violated at every successive time t > 0.
For technical reasons which will become apparent in what follows, we are going

to assume

(A.3) ∂w log φ(t, ·) ∈ L∞(−1, 1) ∀ t > 0.

Notice that, since ∂w log φ = ∂wφ/φ, this assumption is met if, e.g., φ(t, ·) ∈ C1(−1, 1)
is uniformly bounded away from zero. The C1-regularity is quite reasonable, consid-
ering that (A.2) is a parabolic equation, while the uniform boundedness away from
zero depends to some extent on the prescribed initial datum.

The multiscale coupling realized in (4.4) corresponds to interpolating the particle
diffusion process (A.1) with its continuous counterpart (A.2), which we rewrite in the
flux form:

∂tφ− µ∂w
[(
a2(w)∂w log (a2(w)φ)

)
φ
]

= 0,

whence we identify the transport velocity −µa2(w)∂w log (a2(w)φ); cf. (4.2).
Let us start by examining the case of a deterministic interpolation via the param-

eter θ ∈ [0, 1]. We consider then the new stochastic differential equation

dVt = a(Vt)
(
θ
√

2µdBt − (1− θ)µa(Vt)∂v log (a2(v)φ)|v=Vt
dt
)

together with the corresponding Fokker–Planck equation for the probability density
function f = f(t, v) of the random variable Vt:

(A.4) ∂tf − (1− θ)µ∂v
(
a2(v)∂v log (a2(v)φ)f

)
= µθ2∂2

v(a2(v)f).

We claim that the probability density function φ is in general not a solution to this
equation. Setting f = φ in (A.4) we obtain in fact, after standard manipulations,

∂tφ = µ(θ2 − θ + 1)∂2
v(a2(v)φ),

which, recalling (A.2), is satisfied only if θ = 0 or θ = 1. This indicates that the
process Vt governed by the multiscale dynamics with deterministic coupling is not
statistically equivalent to Wt.

In order to exhibit a multiscale coupling which preserves the statistical equivalence
with the original process Wt in (A.1) we consider now the stochastic interpolation used
in section 4, i.e.,

dVt = a(Vt)
(

Θ
√

2µdBt − (1−Θ)µa(Vt)∂v log (a2(v)φ)|v=Vt
dt
)

with Θ ∼ Bernoulli(θ). To deal with the random coefficients Θ, 1−Θ in the derivation
of the Fokker–Planck equation corresponding to such particle dynamics we adopt a
strategy inspired by that of sections 3.1, 3.2. We preliminarily approximate the above
equation in a short time ∆t > 0 as

v∗ = v + a(v)
(

Θ
√

2µ∆tZ − (1−Θ)µa(v)∂v log (a2(v)φ)∆t
)
, v ∈ [−1, 1],

where Z ∼ N (0, 1), and consider the associated Boltzmann-type equation for the
distribution function f = f(t, v) (cf. (3.5)):

d

dt

∫ 1

−1

ϕ(v)f(t, v) dv =
1

∆t

〈∫ 1

−1

(ϕ(v∗)− ϕ(v)) f(t, v) dv

〉
,
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where 〈·〉 denotes the expectation with respect to the random variables Θ, Z while
ϕ is a sufficiently smooth test function with ϕ(±1) = ϕ′(±1) = 0. Expanding ϕ(v∗)
around v for small ∆t while recalling that 〈Zm〉 = 0 for all odd m ∈ N, 〈Z2〉 = 1 and
that 〈Θm〉 = θ, 〈(1−Θ)m〉 = 1− θ for all m ∈ N we get

d

dt

∫ 1

−1

ϕ(v)f(t, v) dv = −(1− θ)µ
∫ 1

−1

ϕ′(v)a2(v)∂v log (a2(v)φ(t, v))f(t, v) dv

+ θµ

∫ 1

−1

ϕ′′(v)a2(v)f(t, v) dv +R(∆t),

(A.5)

the remainder being

R(∆t) =
(1− θ)µ2

2
∆t

∫ 1

−1

ϕ′′(v)a4(v)
(
∂v log (a2(v)φ(t, v))

)2
f(t, v) dv

− (1− θ)µ3

6
∆t2

∫ 1

−1

ϕ′′′(v̄)a6(v)
(
∂v log (a2(v)φ(t, v))

)3
f(t, v) dv,

where min{v, v∗} < v̄ < max{v, v∗}. We observe that

|a2m
(
∂v log (a2φ)

)m| = |(a2)′ + a2∂v log φ|m

≤
(
|(a2)′|+ a2|∂v log φ|

)m
≤ 2m−1

(
|(a2)′|m + a2m|∂v log φ|m

)
for all m ∈ N, where in the last passage we have used Jensen’s inequality. Applying
this to R(∆t) with m = 2, 3 we get

|R(∆t)| ≤ (1− θ)µ2∆t‖ϕ′′‖∞
(
‖(a2)′‖2∞ + ‖a‖4∞‖∂v log φ‖2∞

)
+

2

3
(1− θ)µ3∆t2‖ϕ′′′‖∞

(
‖(a2)′‖3∞ + ‖a‖6∞‖∂v log φ‖3∞

)
,

whence, considering that (a2)′ = 2aa′ with a ∈ W 1,∞(−1, 1) from (2.2) and taking
into account also (A.3), |R(∆t)| → 0 when ∆t→ 0+. Therefore, in the limit ∆t→ 0+

we obtain from (A.5) the Fokker–Planck equation

(A.6) ∂tf − (1− θ)µ∂v
(
a2(v)∂v log (a2(v)φ)f

)
= θµ∂2

v(a2(v)f).

Thanks to a(±1) = 0 and to (A.3), also this equation implies d
dt

∫ 1

−1
f(t, v) dv = 0,

and therefore if supp f(0, ·) ⊆ [−1, 1], the bounds −1 ≤ v ≤ 1 are almost surely never
violated.

Equation (A.6) differs from (A.4) only for the coefficient θ in place of θ2 at
the right-hand side. Nevertheless, such a little difference is enough to make the
probability density function φ a solution to this equation for every θ ∈ [0, 1]. In fact
it can be easily checked that letting f = φ reduces (A.6) to (A.2). This proves that
the stochastic multiscale coupling makes the process Vt statistically equivalent to the
original process Wt as desired.
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