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MULTISCALE MODELING OF GRANULAR FLOWS WITH
APPLICATION TO CROWD DYNAMICS*
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Abstract. In this paper a new multiscale modeling technique is proposed. It relies on a recently
introduced measure-theoretic approach, which allows one to manage the microscopic and the macro-
scopic scale under a unique framework. In the resulting coupled model the two scales coexist and
share information. This way it is possible to perform numerical simulations in which the trajectories
and the density of the particles affect each other. Crowd dynamics is the motivating application
throughout the paper.
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1. Introduction. Modeling collective behaviors of living systems, such as hu-
man crowds or groups of animals, is a difficult task because one can only partially
rely on the well-established theories of classical mechanics. Mathematical models must
take into account several features of living matter: for example, individuals are not
passively dragged by external forces, instead they have a decision-based dynamics;
they experience nonlocal interactions, since they are able to see even far group mates
and make decisions consequently; interactions can be metric (i.e., with group mates
less than a threshold apart) or topological (i.e., with a fixed number of group mates no
matter how far they are) [1]; interactions are strongly anisotropic because the agents
have a limited visual field, and mechanisms for collision avoidance are expected to be
mainly directed toward group mates in front [9]; individuals are different from each
other, each of them having for instance her own goal, reaction time, and maximal
velocity.

One of the most interesting consequences of these characteristics is the emergence
of self-organization. Individuals can deploy themselves to give rise to apparently or-
dered and coordinated patterns [24]. We cite, for example, lanes by pedestrians [17, 21],
clusters by starlings [1], lines by elephants, penguins, and lobsters, and V-like forma-
tions by geese. Actually such group configurations are not the result of a common
decision made by the individuals or by a leader. Instead, they stem from simple rules
followed by each individual, which takes into account the position/velocity of a few
group mates. It is then possible that a single individual does not even perceive the
global structure of the group it is part of.
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In this paper we focus on crowd dynamics, which in the last few years have
been the object of many mathematical models. In the microscopic (i.e., agent-based)
approach pedestrians are considered individually. Models usually consist of a (large)
system of ordinary differential equations, each of which describes the behavior of a
single pedestrian [16, 17, 20, 28, 31]. In the macroscopic approach pedestrians are
instead described by means of their average density, which in most models obeys
conservation or balance laws [2, 5, 7, 18, 22].

It is not fair to state that either approach is better for whatever problem. Rather,
it is clear that a microscopic approach is advantageous when one wants to model differ-
ences among the individuals, random disturbances, or small environments. Moreover,
it is the only reliable approach when one wants to track exactly the position of a few
walkers. On the other hand, it may not be convenient to use a microscopic approach
to model pedestrian flow in large environments, due to the high computational effort
required. A macroscopic approach may be preferable to address optimization problems
and analytical issues, as well as to handle experimental data. Nonetheless, despite the
fact that self-organization phenomena are often visible only in large crowds [15], they
are a consequence of strategical behaviors developed by individual pedestrians.

In [10, 32, 33] we have extensively analyzed a measure-based modeling framework
able to describe group behavior at both the microscopic and the macroscopic scale.
The key point is the reinterpretation of the classical conservation laws in terms of
abstract mass measures, which are then specialized to singular Dirac measures for
microscopic models and to absolutely continuous measures (w.r.t. Lebesgue, i.e., the
volume measure) for macroscopic models. We have shown in [10] that the two scales
may reproduce the same features of the group behavior, thus providing a perfect
matching between the results of the simulations for the microscopic and the macro-
scopic model in some test cases. This motivated the multiscale approach that we
propose here. Such an approach allows one to keep a macroscopic view without los-
ing the right amount of “granularity,” which is crucial for the emergence of some
self-organized patterns. Furthermore, the proposed method allows one to introduce
in a macroscopic (averaged) context some microscopic effects, such as random distur-
bances or differences among the individuals, in a fully justifiable manner from both
the physical and the mathematical perspective. In the model that we propose, mi-
croscopic and macroscopic scales coexist and continuously share information on the
overall dynamics. More precisely, the microscopic part tracks the trajectories of single
pedestrians and the macroscopic part the density of pedestrians using the same evolu-
tion equation duly interpreted in the sense of measures. In this respect, the two scales
are indivisible. This makes the difference from other ways of understanding multiscale
approaches in the literature. For example, in [34] a multiscale geometric technique is
used to represent the circulatory system: one specific part of the network is accurately
modeled in three dimensions, whereas the rest is described by means of lumped zero-
dimensional models. This enables one to account for the whole circulatory network
while keeping the complexity of the model under control. Multiscale methods can
be implemented also at a numerical level in connection with domain decomposition
(see, e.g., [13, 36]), in order to compute the solution to a certain equation with differ-
ent local accuracy. The general idea is to couple accurate but expensive calculations,
performed by a microscopic (e.g., particle-based) solver in small and inhomogeneous
regions, with less accurate but also less expensive ones, performed by a macroscopic
(e.g., continuum) solver in large and homogeneous regions. The two solvers usually
exchange information at the interface of the respective regions. Another possibility
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(see, e.g., [23]) is to alternate the two scales for computing on the same system. In
the resulting iterative algorithm, the output of the microscopic simulation is used as
input for the macroscopic simulation and vice versa. A further way to understand the
multiscale approach is through upscaling procedures. In this case, the ultimate goal
is to pass from a detailed but often inhomogeneous description of some quantities to
a rougher but more homogeneous representation, by averaging out inhomogeneities
via homogenization techniques (see, e.g., [3]). Finally, also the kinetic (or mesoscopic)
representation can be used to achieve multiscale couplings via a micro-macro decom-
position of the distribution function. This technique is used, e.g., in [11, 12] to obtain
hybrid models for fluid particle systems and related numerical schemes. In particu-
lar, the latter combine a fluid-dynamic solver in the whole domain with local kinetic
corrections, which activate according to some transition conditions when the macro-
scopic description breaks down. Similar ideas underlie also the vehicular traffic model
on road networks proposed in [19], which combines a macroscopic description of the
overall flow of cars with a kinetic modeling of the dynamics at the junctions.

It is worth pointing out that the dichotomy fine vs. coarse scale does not necessar-
ily imply a parallel dichotomy ODE vs. PDE modeling. In other words, it is possible
that the underlying mathematical models pertain to the continuum theory at both
scales or that the multiscale coupling between a discrete and a continuous model is
realized only at an approximate computational level by averaging and sampling. Con-
versely, in the multiscale approach we propose here, the microscopic scale is actually
a discrete one which complements the continuous flow with granularity. The resulting
model is then a coupled microscopic-macroscopic one, and computational schemes are
derived accordingly.

The paper is organized as follows. Section 2 introduces the measure-theoretic
framework and models pedestrian kinematics. Section 3 details the multiscale ap-
proach, addressing in particular the choice of microscopic and macroscopic parameters
and their scaling. Section 4 introduces and qualitatively analyzes a discrete-in-time
counterpart of the multiscale model. Section 5 proposes a numerical approximation of
the equations with special emphasis on the discretization in space of the macroscopic
scale, and explains in detail the resulting numerical algorithm. Section 6 discusses the
results of numerical simulations in some case studies aimed at checking the effects
of the multiscale coupling on the crowd dynamics predicted by the model. Section 7
finally draws conclusions and briefly sketches research perspectives.

2. Mathematical modeling by time-evolving measures. From the math-
ematical point of view the mass of a d-dimensional system (d = 1, 2, 3 for physical
purposes) at time ¢ is a Radon positive measure p; that we assume to be defined on
the Borel g-algebra B(R?). For any E € B(R?) the number y;(FE) > 0 gives the mass
of pedestrians contained in E at time ¢ > 0. In principle, the only further property
satisfied by p; is the o-additivity, directly translating the principle of additivity of the
mass.

Let T' > 0 denote a certain final time. Following [4], the conservation of the mass
transported by a velocity field v = v(t, ) : [0, T] x R? — R? is expressed by the
equation

(2.1) % + V- (uv) =0, (t,x)€ (0, T] xR?

along with some given initial distribution of mass uo (initial condition). Derivatives
appearing in (2.1) are meant in the functional sense of measures. Specifically, for
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every smooth test function ¢ with compact support (i.e., ¢ € C>°(R?)), and for a.e.
t € [0, T, it results

(2.2) G [ 0@ du@) = [ olt, 2)- Vo) dus(a),

where integration-by-parts has been used at the right-hand side. A sufficient condition
for (2.2) to be well-defined is that v(¢, -) is integrable w.r.t. p for a.e. ¢t € [0, T1.

A family of time-evolving measures {ut}t>0 is said to be a (weak) solution to (2.1)
if, for all € C>°(R?), the mapping ¢ fRd x) dut () is absolutely continuous and
satisfies (2.2). In particular, the latter statement means

(2.3) /¢ 2)dpiy (x /qs ), // t, 2) - V() dpe(z) dt

t1 Rd

for all t1, ta € [0, T, t1 < to, and all ¢ € C°(RY).

Modeling the interactions among pedestrians. Equation (2.1) provides the
evolution of the measure p; as long as the velocity is specified. In our case, given the
absence of a balance of linear momentum, this implies modeling directly the field v.
For this reason, our approach will result in a first order model.

First order models are quite common in the literature, especially at the macro-
scopic scale. The velocity can be either specified as a known function [29] or linked
to the density p of pedestrians by means of empirical fundamental relations v = v(p)
[6, 22, 35]. Sometimes a functional dependence on the density gradient is envisaged,
in order to model the sensitivity of pedestrians to the variations of the surrounding
density field [2, 7]. Microscopic models focus instead more closely on the interactions
among pedestrians, normally expressing them in terms of generalized forces. They re-
sort therefore to a classical Newtonian paradigm, in which the acceleration is modeled
explicitly [14, 16]. We remark, however, that in [30, 31] the authors adopt a kinematic
modeling of the interactions in the frame of a microscopic model.

With the aim of setting up a model based on the mass conservation only, but in
which the microscopic granularity complements the macroscopic dynamics, we can-
not entirely resort either to generalized forces or to fundamental relations. Taking
advantage of the mass conservation equation in the form (2.2), which does not as-
sume a priori any modeling scale, our approach will be at the same time kinematic,
macroscopic, and focused on the strategy developed by pedestrians at the microscopic
scale.

To be more specific, let the velocity be expressed in the following form:

(2.4) v(t, @) = vlp () = vaes (@) + v (2),

the square brackets denoting functional dependence on the measure ;.

The function vges : R — R? is the desired velocity, i.e., the velocity that pedestri-
ans would set to reach their destination if they did not experience mutual interactions.
In the simplest case it is a constant field, whereas in more complicated situations it ac-
counts for the presence of possible obstacles to be bypassed (e.g., pedestrians walking
in built environments). In our approach the desired velocity is deduced a priori from
the geometry of the domain, meaning that it is totally independent of the measure
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1. In other words, it can be regarded to all purposes as a datum of the problem. It
is not restrictive to assume that it has constant modulus

(25) |'Udos($)| =V, Vze Rdv

where V represents some characteristic speed of the walkers. We refer the reader to
[32] for a possible method to construct vges.

The function v[u] : R? — R? is the interaction velocity, that is, the correction
that pedestrians make to their desired velocity in consequence of the interactions.
The nonlocality of the interactions is introduced in this framework by deriving v/[u]
from a synthesis of the information on the crowd distribution around each pedestrian.
Specifically, we assume

(2.6) ul(a) = [ 1y = gt = dua(o),

RN{z}

where

e f:R, — Ris a function with compact support describing how the walker in
x interacts with her neighbors on the basis of their distance. If supp f = [0, R]
for some R > 0, then a neighborhood of interaction is defined for the point z
coinciding with the ball Br(x) C R? centered in x with radius R;

e oy, € [—m, 7] is the angle between the vectors y —  and vges(z), that is,
the angle under which a point y is seen from x w.r.t. the desired direction of
motion;

e g:[—m m — [0, 1] is a function which reproduces the angular focus of the
walker in x.

Integration w.r.t. u; accounts for the mass that the walkers see, considering that two
fundamental attitudes characterize pedestrian behavior:

e repulsion, i.e., the tendency to avoid collisions and crowded areas,

e attraction, i.e., the tendency, under some circumstances, to not lose the con-
tact with other group mates (e.g., groups of tourists in guided tours, groups
of people sharing specific relationships such as families or parties).

Focusing on one of the simplest choices, nonetheless physiologically sound, we
suggest for f the following expression:

F,
(2.7) f(s) = 5 X, r,1(8) + Fusxo, r.)(5),

where F,., F, > 0 are repulsion and attraction strengths, and R,., R, > 0 are re-
pulsion and attraction radii. This form of f translates the basic idea that repulsion
and attraction are inversely and directly proportional, respectively, to the distance
separating the interacting pedestrians.

As pointed out in the introduction, interactions can be either metric or topologi-
cal. An interaction is metric if the corresponding radius is fixed, so that each walker
interacts with all other pedestrians within that given maximum distance. Conversely,
an interaction is topological if the corresponding radius is adjusted dynamically by
each walker, in such a way that the neighborhood of interaction encompasses a pre-
defined mass of other pedestrians she feels comfortable to interact with. In this paper
we will be mainly concerned with metric interactions, for both repulsion and attrac-
tion. The interested reader is referred to [1, 10], and references therein, for a detailed
discussion of metric and topological effects, also by means of examples and numerical
simulations.
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The function g carries the anisotropy of the interactions, which essentially consists
in that pedestrians cannot see all around them and they are not equally sensitive
to external stimuli coming from different directions. If & € [0, 7] is the maximum
sensitivity angular width, a very simple form of g is

(2.8) g(s) = [~&, al(s), s € [~ 7.
By mollifying this function it is possible to account for the visual fading that usually
occurs laterally in the visual field when approaching the maximum angular width.!

3. The multiscale approach. The framework presented in section 2 is suitable
to obtain, as particular cases, models at both the microscopic and the macroscopic
scale. In this section we first briefly review the methodology for their individual deriva-
tion, already proposed in [10] to study microscopic and macroscopic self-organization
in animal groups and crowds. Then, exploiting the tools offered by the measure-
theoretic setting, we merge these concepts into a unique multiscale model, in which
the microscopic and the macroscopic dynamics coexist.

3.1. Microscopic models. Let us consider a population of N pedestrians,
whose positions at time ¢ are denoted by {P;(t) §V:1. In this case the mass of a set

E € B(RY) is the number of pedestrians contained in E; that is
wt(E) = card{P;(t) € E},

hence p; is the counting measure. We represent it as a sum of Dirac masses, each
centered in one of the P;’s

N
=2 _0p,)
j=1

Plugging this in (2.2) gives
g & N
(3.1) 5 2 G(Pi(D) =Y _u(t, Pi(h) - Vo(P;(t), Vo€ C(RY),
j=1 j=1
whence, taking the time derivative at the left-hand side and rearranging the terms,

>[5t = it Pi0)] - Vo(ri) =0,

Jj=1

the dot over P; standing for derivative w.r.t. t. The arbitrariness of ¢ implies

(3:2) Pi(t) = vlm)(P;(1)), j=1,..., N,

where we have set v(t, Pj(t)) = v[u](P;(t)) according to (2.4); therefore the mi-
croscopic model specializes in a dynamical system of N coupled ODEs for the P;’s.

n order to differentiate also the maximum angular widths of repulsion and attraction [9], one
may generalize (2.6) by replacing the product of f and g with a function of two variables accounting
simultaneously for |y — z| and oy .
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The coupling is realized by the measure p; in the velocity field. In particular, the
microscopic counterpart of (2.6) reads

V(P = 3 S0Pk~ Pyl)glons) e
k=1,..,N |Pe — By’
PL#P;

where ag; € [—n, 7] is shorthand for the angle formed by the vectors P, — P; and
vdes(P;). We point out that, with the function f given by (2.7), the statement P, # P;
in the above formula can be converted into the milder one k # j. Indeed one can prove
that if the P;’s are initially all distinct they remain distinct at all successive times
t > 0 (see [9] for technical details).

3.2. Macroscopic models. Macroscopic models are based on the assumption
that the matter is continuous, thus the measure p; is absolutely continuous w.r.t.
the d-dimensional Lebesgue measure £%, u; < £%. Radon-Nikodym’s theorem asserts
that there exists a function p(t, -) € LIOC(]Rd) such that

(3.3) dpe = p(t, ) dL,  p(t,-) >0 a.e.,

called the density of p; w.r.t. £ In our context p(t, x) represents the density of
pedestrians at time ¢ in the point z.
Using p, the mass conservation equation (2.2) rewrites as

Ga) 5 [t o) s = [ ot 2)ott, 2) - Vol dr, o€ C2(RY,

R4 R4
namely a weak form of the continuity equation
(3.5) op +V-(pv)=0
. 9 .

The interaction velocity specializes as

/f ly — x[)g O‘wy)| |p(t y) dy,

where it should be noticed that the domain of integration may now indifferently
include or not the point x because {z} is a Lebesgue-negligible set.

3.3. Multiscale models. If the measure p; is neither purely atomic nor entirely
absolutely continuous w.r.t. £¢ but includes both parts, we get models that incorpo-
rate the microscopic granularity of pedestrians in the macroscopic description of the
crowd flow. More specifically, we consider

(36) Mt = Omt + (1 - H)Mt,
where
N
my = dej(t), dM(z) = p(t, ) dzx
j=1

are the microscopic and the macroscopic mass, respectively. The parameter 6 € [0, 1]
weights the coupling between the two scales, from 6§ = 0 corresponding to a purely
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macroscopic model to § = 1 corresponding to a purely microscopic model. In (3.6) no
scaling parameters explicitly appear, but we anticipate that they will arise naturally
from our next dimensional analysis (cf. section 3.4).

Using the measure (3.6), the mass conservation equation (2.2) takes the form of
a mix of microscopic and macroscopic contributions

d N
- (‘)Z S(Bs(0) +(1-0) [ st 2)o(a) dx)

Rd

=0 o(t, Pj(1)) - Vo(P;(1))+(1-0) /p(ta 2)u(t, z) - Vé(z)dz, VoeCF(RY),

Jj=1 Rd

formally a convex linear combination of (3.1), (3.4). The interaction velocity v/[u] is
now given by

) =0 S FOP0) ~ abatonn o) T —
k=1,..,N
Pk(t)iw
+(1=0) [ (= allgten) E=rott. )y
Rd

therefore it coincides neither with the fully microscopic nor with the fully macroscopic
one. This definitely makes the overall dynamics not a simple superposition of the
individual microscopic and macroscopic dynamics.

It is worth noticing that the point z may or may not be one of the positions of
the microscopic pedestrians. Computing v{u,] for x = P;(t) shows that the interaction
velocity of the j-th pedestrian does not only account for other microscopic pedestrians
contained in the neighborhood of interaction but also for the macroscopic density
distributed therein, which represents some crowd whose subjects are not individually
modeled. Specifically, the term responsible for this is

(3.7 | £y = BiOatar, o)L= ot v
Rd

that we may regard as the macroscopic contribution to the microscopic dynamics.
Analogously, computing v[u,] for = different from all of the P;’s shows that the in-
teraction velocity of an infinitesimal reference volume centered in x does not only
depend on the density distributed in the neighborhood of interaction but also on the
microscopic pedestrians therein, which play the role of singularities in the average
crowd distribution due to the granularity of the flow. The corresponding term is

P (t) —x

(3.8) ]HZ F(1Pu(t) — xl)g(am(t))mv

=1,..,N
Py (t)#x
which gives the microscopic contribution to the macroscopic dynamics.

3.4. Dimensional analysis. In order to scale correctly the microscopic and
the macroscopic contributions, it is convenient to refer to the nondimensional form of
the model. For this, let us preliminarily notice that the main quantities involved in
the equations have the following dimensions:
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Vdes] = [V] = length/time

f] = length/(time x pedestrians)

[1¢] = pedestrians

[p] = pedestrians/length?,

where “pedestrians” is actually a dimensionless unit. Additionally, g and 6 are di-
mensionless. Let L, V', o be characteristic values of length, speed, and density (in
particular, V may be the desired speed introduced in (2.5)) to be used to define the
following nondimensional variables and functions:

t= 2t V) = vl (a),

P =) pwa) =S (pene ) me - 1o (Fr).

Notice that, due to the choice of V' as characteristic speed, the dimensionless desired
velocity v}, turns out to be a unit vector.
In more detail, the nondimensional mass measure p;. is given by

i () = dug,e(La”)
= 0>, ddppr () (Lx™) 4 (1 = 0)op™ (7, r*) L4 dx*
= 03, doprn () + (L= 0)Ap*(t*, z7) da”

— Gdm (z*) + (1 — O)AdM (%),

where we have set A := oL? and we have recognized the dimensionless microscopic
and macroscopic masses

N
mi. = Zép;(t*), dME(z*) = p*(t*, -a*) dx™.
j=1
We notice that the coefficient A has unit [A] = pedestrians; therefore it is a

nondimensional number fizing the scaling between the microscopic and the macro-
scopic masses. It says how many pedestrians are represented, in average, by a unit
density p* in the infinitesimal reference volume dx*.

Remark. The measure

(3.9) (= Omi. + (1— 0)AM;,

can be read as a linear interpolation between the microscopic and the macroscopic
mass via the parameter 6, provided mj. (R?), M. (R9) are, up to scaling, the same
mass; i.e., mp (R?) = AM}: (R?). As we will see later (cf. Corollary 4.2), in the mul-
tiscale model the microscopic and macroscopic masses are individually conserved in
time; hence this can be achieved by setting

my(RY) N

(3.10) AR T G®Y

as long as 0 < N, Mg (RY) < +oc.
In the following we will invariably refer to the nondimensional form of the equa-
tions, omitting the asterisks on the nondimensional variables for brevity.
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4. Discrete-in-time model. In this section we derive a discrete-in-time coun-
terpart of the multiscale model, that will help us gain some insights into the qualita-
tive properties of the mathematical structures previously outlined. In addition, it will
serve as a first step to devise a numerical scheme for the approximate solution of the
equations.

Let At,, > 0 be a possibly adaptive time step and let us introduce a sequence of
discrete times {t, },>0 such that to = 0 and t,41 — ¢, = At,. Denoting p, = p,
from (2.3) with the choice t; = t,, ta = tp41 we get

/¢ ) dpin g1 (z /¢ ) dpin (z // t, z) - Vo(x) dpy(x) dt

tn RI
= Atn/v(tn, x) - Vo(x) dpn(z) + o(Aty,),
Rd

whence

[ @) dinir @) = [ 16) + Bt ot 5) - Vo(@)] dpno) + o(,)

At this point let us explicitly assume that j, (R?) < +oo. If v(t,, -) is p,-uniformly
bounded, then ¢(x) + At, v(ty,, x) - Vo(z) = ¢(x + Aty v(tn, ©)) + o(At,,); thus

/¢ ) dpin 1 (2 /¢x+At 0(tn, @) diin (@) + o(Aty).

Defining the flow map v, (x) := x + v(t,, x)At, and neglecting the term o(At,,), w
are finally left with

(4.1) / 6(2) dtns1 (2 / $(1n (@) i (2),

which makes sense actually for every bounded and Borel function ¢. Choosing ¢ = yg
for some measurable set F € B(R?) entails

tins1(E) = pn (v, (E)), VE € B(RY),

meaning that g, is the push forward of u,, via the low map ~,,, also written p, 11 =
Yn#n. Equation (4.1) provides a discrete-in-time counterpart of (2.3). Obviously, it
requires to be supplemented by an initial condition pg in order for the sequence
{ftn}n>1 to be recursively generated.

Notice that, with the velocity field (2.4), it results v(t,, x) = v[p,](z) with in
particular

V@) =0 S FIPE — a)glowy) oL
i N [P — ]
Pl #x
(4.2) L (1- A / = aa(0rey) L= (w) .
Rd

where P’ := Pi(t,) and p,(-) := p(tn, -).
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Preserving the multiscale structure of the measure. Recall that in the
multiscale model we assumed that our measure is composed by a microscopic granular
and a macroscopic continuous mass.? Of course, this is just a formal assumption made
to write the model. From the analytical point of view, it needs be proved that such a
measure can be actually a solution to our equations.

Set my, := my, , M,, := M, so that, owing to (3.9), the measure p,, can be given
the form

(4.3) fn, = 0my, + (1 — 0)AM,,.

The following result clarifies the role played by the flow map -, in preserving the
multiscale structure of u,, after one time step.
THEOREM 4.1. Let a constant C,, > 0 exist such that

(4.4) LYy, YE)) < C.LYE), VE € B(RY.

Given u, as in (4.3), there exist both a unique atomic measure m,+1 and a unique
Lebesgue-absolutely continuous measure My 11 with a.e. nonnegative density such that
MUn+1 = 9mn+1 + (]. — 6‘)AMn+1

Proof. Using the linearity of the operator 7, #-, the measure pu,1 is given by

pnt1 = O(ynFEmn) 4+ (1 — 0)A(yn#M,).
Let us define
Mpt+1 = VnFEMy.

A direct calculation shows that such a m,; is in fact an atomic measure. For any
measurable set £ € B(R?) we compute

N
(yn#mn)(E) = mu (v, (E)) = Y 6pp (v, (E))
j=1

= card{y,(P}") € £}
N

= Z5yn(P;)(E)§
j=1

hence m,, 11 as defined above is in turn a combination of Dirac masses centered in the
new positions {P;LH};-V:l given by
(4.5) PP i= 3, (PF) = PP+ o[, (P) Aty

Analogously, let us define

Mn+1 = Y H#My.

We claim that, under the hypothesis of the theorem, this measure is absolutely
continuous w.r.t. £¢. To see this, let £ € B(R?) be such that £4(E) = 0. Then

2With respect to the general structure of a measure as provided by Riesz’s theorem, this means
that we are in particular excluding the Cantor’s part.
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LYy H(E)) < C,LYE) = 0, whence, using that M, < £¢ by assumption, we get
M, 41(E) = My, (v, 1(E)) = 0 and the claim follows.

To show the nonnegativity of the density of M,, 1 we take the Radon—Nikodym
derivative. Then we discover, for a.e. x,

T Mn+l(Br($))_ . 1
prr(@) = lim =gy = m S / pu(y) dy,

v ' (Br ()

where wy is the volume of the unit ball in R%. Since p,, is a.e. nonnegative by assump-
tion, the same holds for p, 41 and we are done.
Finally, uniqueness of my 41, M1 is implied by the uniqueness of the Radon—
Nikodym decomposition of a measure. O
The proof of Theorem 4.1 is constructive; indeed it shows explicitly how to ob-
tain the measure p,41 starting from p,: one simply pushes forward separately the
microscopic and the macroscopic masses via the common flow map ~,.
By referring to the results proved in [33], we can state some additional properties
of the measure piy,.
COROLLARY 4.2. If v, satisfies (4.4) for all n > 0 and the initial measure L
complies with the form (4.3), then
1. there exists a unique sequence of atomic measures {my},>1 and a unique
sequence of positive Lebesgue-absolutely continuous measures {Mp}n>1 such
that iy, has the form (4.3) for alln > 1;
2. the measure p,, satisfies the following conservation law:

(4.6) pnt1(E) = pn(B) = = [pn(E\ 7, (B)) — pin (v, (B) \ )]

for all E € B(R?). In particular, both m.,, and M, satisfy this law separately
at each time step;
3. if po € LS (RY), then p, € L (R?) for all n > 1 with moreover

loc loc

n—1

esssup |pn(z)| < H Cjesssup |po(x)|
z€eE §=0 z€eE

for all compact set E C R?, where the Cj’s are those appearing in the state-
ment of Theorem 4.1.

Proof. 1. Existence and uniqueness of microscopic and macroscopic masses have
been proved in Theorem 4.1 for one time step; hence they follow for all times n > 1
by induction.

2. In view of the o-additivity of the measure we have, for all E € B(R?),

pn+1(B) = pn (v ' (B) N E) + pin (75, (B) \ E).

Subtracting u,(E) at both sides and collecting conveniently gives

fin1(E) = pin(E) = — [pn(E) = ptn(7, {(E) N E)] + pn (v, 1 (E) \ E)

whence, observing that E = (v, }(E)NE)U(E\, }(E)) with disjoint union, the thesis
follows. Since we know from Theorem 4.1 that m,, 1, M, 1 are in turn generated by
push forward with ~,, this reasoning can be repeated to find that each of them fulfills
the very same conservation law.
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3. In [33] it is proved that p, € L (R?) implies pn1 € LS (R?) as well, with
eSS SUP,c g | pnt1 ()| < Cpesssup,c g |pn(2)]. Thus proceeding by induction from n =
0 we get the result. d

Some comments on the results of this section are in order.

(i) The main assumption of both Theorem 4.1 and Corollary 4.2 is that the flow
map -y, satisfies (4.4). In general it may be hard to check the validity of
this property directly but in [33] it is proved that a sufficient condition for
it to hold true is that 7, be a diffeomorphism and that the velocity v[u,] be
Lipschitz continuous with At,, Lip(v[u,]) <1,n=0,1,2,....

(ii) Equation (4.6) states that the variation of the mass of a set E in one time
step is due to the net mass inflow or outflow across OF. Indeed, E \ v, 1 (E)
is the subset of E which is not mapped into E by ~, (outgoing flux), and
v Y(E) \ E is the subset of R? \ E which is mapped into E by 7, (ingoing
flux).

(iii) Choosing E = R% in (4.6) yields pn+1(R?) = 1, (R?), i.e., the conservation of
the total mass at each time step. If z19(R?) < 400, then the mass is finite for
all n; therefore, up to normalization, the u,’s may be regarded as probability
measures. Furthermore, since (4.6) applies separately also to m,, and M,,
both the total microscopic and the total macroscopic masses are conserved in
time.

(iv) The conclusions of Theorem 4.1 can be somewhat adapted to continuous-in-
time models. In particular, as far as the multiscale structure of p; is concerned,
they apply to solutions of (2.1) admitting the representation p; = ~yi#u0,
where 7, : R? — R? is the flow map satisfying

875—?) = v[yve# o] (ve(x))

Yolx) =2z

Vo e RY

and pg is the initial datum. However, for these models additional technical
issues arise, such as the proper characterization of existence and uniqueness
of the solutions and of regularity of the flow map, whose study is beyond the
scope of the present paper.

5. Numerical approximation of the equations. As anticipated at the be-
ginning of section 4, the discrete-in-time model provides a first discretization of the
equations, which would be sufficient for tracking the microscopic mass (cf. (4.5)).
However, the macroscopic mass requires a further discretization in space in order to
come to a full approximation of the density p. Notice that, in principle, one may refer
to (3.5) and rely on the wide literature on numerical methods for nonlinear hyper-
bolic conservation laws [27]. Nevertheless, aside from the intrinsic complication due
to the multidimensional nature of the equations, this strategy poses several nontrivial
technical difficulties. For example, it demands a correct definition of the convection
velocity (i.e., formally the derivative of the flux pv w.r.t. the density) in presence of
nonlocal multiscale fluxes, as well as a consistent formulation of entropy-like criteria
for picking up physically significant solutions. All these issues are instead bypassed if
one maintains the measure-theoretic formalism.

For the discretization in space of the density p,, we partition the domain in pair-
wise disjoint d-dimensional cells E; € B(RY), where i € Z? is an integer multi-index,
sharing a characteristic size h > 0 such that £4(F;) — 0 for all i when h — 0%
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(for instance, h ~ diam F;). Every cell is further identified by one of its points z;,
e.g., its center in case of regular cells.
We approximate p,, by a piecewise constant function p,, on the numerical grid

on(x) =pl', Va € E;,

where p}' > 0 is the value that p,, takes in the cell E;. Consequently, the measure M,
is approximated by the piecewise constant measure dM, = pn dL?, which entails the
approximation fi,, = 0m, + (1 — 9)A]\an for fiy,.

Analogously, we approximate the velocity v[u,] by a piecewise constant field

Olfin](x) =0, Va e E;,

where the values v € R? are computed as v = v[ji,](z;). The discretization of the
velocity gives rise to the following discrete flow map:

Tn () = + 0lfin] () Ay,

which turns out to be a piecewise translation because 0[fi,] is constant in each cell.
Finally, we look for a piecewise constant approximation M, 1 of M1 by impos-
ing the push forward of M,, via the flow map ,,:

Vi1 (E) = M, (3, (B)), VE € BRY).

In particular, choosing F = E; yields

s 1 7 g ;
(5.1) Pt = 5D > LN E N An(Er)), VieZd,
Y kezad

which provides a time-explicit scheme to compute the coefficients of the density py11
from those of p,,. Notice in particular that 7, (Ej) is simply the set Ej + v) At,,.

Notice that this scheme is positivity-preserving, in the sense that p, > 0 implies
pn+1 = 0 as well; hence, by induction, po > 0 implies p, > 0 for all n > 0. Such
a basic property is not as straightforward in usual numerical schemes for hyperbolic
conservation laws. Indeed, unless suitable corrections are implemented, the latter may
develop oscillations leading to locally negative approximate solutions even when the
exact solution is not expected to be so.

Furthermore, considering that 7,, is a translation in each grid cell and using the
invariance of the Lebesgue measure under rigid transformations, we deduce

/ Poi(a)dr = g D LGN E) N Ey) = Y pRLNE) = / (@) da;

R4 kezd i€Z4 kezd R

thus the approximate macroscopic mass M,, is conserved in time.
The quality of the spatial discretization described above w.r.t. the refinement of
the grid, in the case of regular flow maps, is provided by the following result.
Remark. At this point we assume explicitly that the domain of the problem is a
bounded set @ C R?, which for all fixed h > 0 is partitioned with a finite number of
grid cells (however, tending to infinity when i — 0%). The multi-index 4 of the grid
cells runs in a finite subset Z C Z<.



MULTISCALE MODELING OF GRANULAR FLOWS 169

THEOREM 5.1. Assume that v, is a diffeomorphism and let h, At,, be sufficiently
small and satisfying

At,
. — v < 1.
62 ne =t
Then
(i) There exists a constant Cy,, > 0, independent of h, such that

S 1M (B:) = Wi (B < Co | [ Ipu(@) = (o)l da 1
i€ Q

(i) If vy ](x) is uniformly bounded, there exists a constant C), > 0, independent

of h, such that

max | M (Ei) — M, (Ei)| < max [ Mo(E;) — Mo (Ei)| + Cy,h.

Proof. See [33]. a

In order to gain some control over the error introduced by the spatial discretiza-
tion, Theorem 5.1 requires the CFL condition (5.2) to be satisfied at each time step,
similarly to numerical schemes for hyperbolic conservation laws. However there is a
remarkable difference from their CFL condition, namely that (5.2) involves directly
the flux velocity and not the convection velocity.

The algorithm. Here we detail the numerical algorithm stemming from the
above scheme that we use for simulations.

The algorithm combines a microscopic and a macroscopic part. The former han-
dles the evolution of pedestrian positions, updating a vector which stores the values
Pl e R?. The latter manages instead the evolution of the density, and at every time
step it updates the values p}* at the grid cells. The two models evolve by means of
the same velocity field o[fi,], thus guaranteeing coherence of the final solution. This
conceptual scheme is motivated by Theorem 4.1. The velocity field must be defined at
pedestrian positions {Pf};&1 for the microscopic part and at the grid cells {E; }icr
for the macroscopic part.

Let us introduce the following superscripts:

e micro: quantities defined at pedestrian positions,

e macro: quantities defined at grid cells,

e micro-for-micro: microscopic quantities computed at pedestrian positions,

e micro-for-macro: microscopic quantities computed at grid cells,

e macro-for-micro: macroscopic quantities computed at pedestrian positions,

e macro-for-macro: macroscopic quantities computed at grid cells.

The algorithm consists of the following steps.

1. Initialization. We fix the number N of microscopic pedestrians that we want
to model, we define their positions, and we compute the coefficients p? of the
initial density according to a local average of the microscopic mass, taking
the scaling (3.10) into account. More precisely, we set

o _ mo(Be(i))

0 _ _OFE)) e T
P RLA(Be(m)) T

where mg is the microscopic mass at the initial time and Bg¢(x;) is the ball
centered in the center of the grid cell E; with radius £ > 0. The latter is tuned
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depending on the positions of the microscopic pedestrians, in such a way that
the relation A = mo(R%)/My(R?) be satisfactorily fulfilled in the numerical
sense? (Mj being the approximate macroscopic mass at the initial time).

. Microscopic part. At time t = t,, we compute the sum at the right-hand side

of (4.2) for x = P}' obtaining
ﬂmicro—for—micro L D[m ](Pn)
= nl(P}").
The same computation performed for x = x; gives instead
Dmicro—for—macro

1= v[my](z:)

(cf. (3.8)), which will be shared with the macroscopic part of the code.

. Macroscopic part. At the same time instant ¢ = t,, we numerically evaluate

the integral at the right-hand side of (4.2) for = z;, using the approximate
density p,, in place of p,. This way we obtain

ﬁmacro—for—macro = D[Mn](xl)
Next we compute the same integral for = P}*, which yields
Dmacro—for—micro — lN/[Mn] (P;’L)

(cf. (3.7)). This component of the velocity field will be shared with the micro-

~macro-for-macro

scopic part of the code. In particular, the integrals involved in ©
and pmacro-formicro are pumerically evaluated via a first order quadrature

formula.

. Desired velocity. If the velocity field vges is given analytically, the computation

of yjiero = deS(Pj”) and of V2" = vqes(x;) 1s immediate. If instead vqes

is defined on the numerical grid only, for instance because it comes from the
numerical solution of other equations [32], then v].e™ is computed by inter-
polation. Since we are assuming that all macroscopic quantities are piecewise

constant, we coherently choose a zeroth order interpolation.

. Qverall velocity. We assemble the previous pieces as

B = 5l )(Py)

. micro + GDmICYO—fOI‘—mlCI‘O _|_ (1 _ H)Aﬁmacro—for—mlcro

— Ydes )

and analogously
5 = {in] ()

~micro-for- ~ -for-
— ,U(Iil"lszcro + eymlcro or-macro + (1 _ G)Aymacro or macro.

. Computation of At. We compute the largest time step At allowed by condition

(5.2) for the macroscopic velocity field o™acre.

. Advancing in time. We update pedestrian positions and density according to

(4.5), (5.1) by means of 9™ and 7™  respectively.

3Notice that if one replaces Be(x;) with the cell E;, then the measures mo, My satisfy the scaling
(3.10) exactly. However, averaging on a neighborhood a bit larger than a single grid cell is essential
in order to have a macroscopic density really distributed in space rather than clustered in grid cells.
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Remark. No matter what the value of 8 is, the two approaches always coexist. If
6 = 0, the macroscopic scale is leading, and the microscopic pedestrians are simply
driven by the macroscopic velocity field. This is the classical way of seeing flowing
(Lagrangian) particles in a fluid, whose motion was previously computed. Conversely,
if 8 = 1, the microscopic scale is leading, and the evolution of the macroscopic density
depends only on the positions of the microscopic pedestrians.

6. Numerical tests. In this section we present the results of numerical sim-
ulations performed with the model and the algorithm described above. As natural
for pedestrian flows, we deal with two-dimensional (d = 2) bounded domains, say
Q) C R?, confining the attention to the restriction measure j;.2. This means that the
mass possibly flowing out of the domain is considered as lost; i.e., it no longer affects
the computation.

Sometimes we will deal with domains with obstacles understood as internal holes.
They require a careful handling of the velocity at their boundaries so as to prevent
it from pointing inward (which would imply unrealistic outflow of mass). In order to
have the mass bypass the obstacles, the velocity (2.4) is projected onto a space of
admissible velocities Vaqm, which can be defined in several ways depending on the
pedestrian behavior one wants to model. Our choice for the next examples is

Vadm = {v € R? : v-n > 0 at every obstacle boundary},

where n is the outward normal unit vector at the obstacle boundaries. This cor-
responds to setting to zero the normal component of the velocity (2.4) in case it
points into an obstacle. A different possibility is to set to zero both the normal and
the tangential component if the first one points into an obstacle. In the former case
pedestrians can slide along the obstacle walls following the tangential velocity, whereas
in the latter case they remain still against the obstacles until no longer pushed by
flowing neighbors. This choice may model, for instance, a more relaxed condition in
which walkers are not in a hurry to reach their destination.

Concerning the parameters, we assume & = /2 (frontal interaction) in all tests,
which is suitable for the most common situations encountered in pedestrian flow.
We also assume no attraction between group mates except in the last test (Test 4),
in which we model the dynamics of a group of people following a leader. Table 6.1
summarizes the values of all other parameters used in the numerical tests.

TABLE 6.1
Summary of the parameters used in the numerical tests.

[ Test | 0 | N ] A | F» | Fa | Rr | Ra |
1 0,1 100 10 0.1 0 0.5 N/A
2 0,1 10,100 | 10,100 | 0.1 | 0 025 | N/A
3 0,0.3,1 30 30 0.1 0 see text | N/A
4 0.3 25+1 80 0.05 | 0.4 1.5 1.5

Test 1: Dynamics of the interactions. In this first test we study the effect
of the multiscale coupling on the rearrangement of a crowd subject only to internal
repulsion. The goal is to show that it is possible to obtain a perfect correspondence
between the microscopic and the macroscopic dynamics in some simple cases, which
originally motivated and justified the possibility of a coupled multiscale approach [10].

To this purpose we switch the desired velocity off, so that the velocity v[u] coin-
cides with the interaction velocity v[u]. (Actually, in order to compute the angle oy,
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in (4.2) we conventionally assume vges to be constantly directed along the horizon-
tal axis, so as to define what is ahead and what is behind.) Pedestrians are initially
arranged in a square-shaped equally spaced formation, see Figure 6.1(a). Due to the
frontal repulsion, we expect the frontal part of the group to stand still and the rear
part to stand back from the group mates ahead. We compare the expansion dynamics
of the group as predicted by the macroscopic (f = 0), the microscopic (f = 1), and
the multiscale (6 = 0.3) models. The simulation runs until the final time 7" = 1 is
reached. Notice that the configuration assumed at that time is not an equilibrium of
the system. Results are shown in Figures 6.1(b-d).

The main features of the dynamics outlined above are caught at all scales. In
particular, the effect of the only frontal repulsion is visible at the head of the group,
where pedestrians stay aligned on a vertical line as they are initially because there is
none in front of them. This clearly shows up looking both at the density distribution
at the macroscopic scale (Figure 6.1(b)) and at the individual pedestrians at the
microscopic scale (Figure 6.1(c)).

Of course, this does not mean that either scale has no influence at all on the other.
For instance, as an interesting effect of the microscopic scale driving the macroscopic
dynamics, we notice some kind of “density holes” near every microscopic pedestrian
in the limit of the purely microscopic model (Figure 6.1(c)). They are actually small
areas of very low density caused by the fact that microscopic repulsion has a great
impact at the macroscopic scale. Recall indeed that the microscopic granularity is seen
as a singularity in the average crowd distribution, and that for § = 1 the evolution of
the macroscopic density is fully ruled by the microscopic scale. With the multiscale
model (Figure 6.1(d) with 6 = 0.3) the hole effect is instead limited, and a good
compromise between the two scales is reached. Furthermore, in Figure 6.1(d) (mul-
tiscale) pedestrians are less scattered than in Figure 6.1(c) (microscopic), meaning

0 . . . . . 0 0 . . | . . 0
o 1 2 3 4 5 6 o 1 2 3 4 5 6
(a) (b)
6 2 6 2
5 F 5L

Fia. 6.1. Test 1. (a) Initial condition. Crowd distribution at ttme T = 1 with (b) the purely
macroscopic model, (c) the purely microscopic model, and (d) the multiscale model with 6 = 0.3.
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that the contribution of the macroscopic scale on the overall dynamics has, in a sense,
a homogenizing effect. Conversely, in Figure 6.1(d) the macroscopic density is more
broken than in Figure 6.1(b) (macroscopic), thus the microscopic scale destroys the
macroscopic smoothness and introduces a nonnegligible granular effect in the overall
dynamics.

To investigate more in depth the intercorrelation between the scales we consider
now how the moments of inertia of the mass distribution depend on the coupling
parameter 6, fixing all other parameters as indicated in Table 6.1. Indeed from classical
mechanics it is known that moments of inertia provide quantitative information on
the shape of the group.

Let x¢ be the center of mass of the crowd at the final time T

1

Q

then we consider the following three moments of inertia around zq:
1= [l =s0) i durta), 15 = [la=z0) i dur(o). 15 =1+ 15,
Q Q

i, j being the unit vectors in the direction of the horizontal and vertical axis, respec-
tively. I} and I refer to stretching or shrinking of the group in the horizontal and
vertical direction, respectively, whereas I/, accounts for the global distribution of the
crowd around its center of mass. By replacing pr in the above formulas with the mea-
sure mp (Mrp, resp.) it is possible to study the analogous moments of inertia of the
sole microscopic (macroscopic, resp.) mass, that we denote by I, (If\g) G Tesp.).

The graphs of Figure 6.2 show the trend of the functions 6 — I 4
LM and @ s I3, Notice that, due to (3.9), the moments of inertia of the
multiscale mass are linear interpolations of the corresponding moments of inertia of
the microscopic and the macroscopic masses. The latter are therefore also plotted in
the graphs for reference. The most relevant fact is that the multiscale moments of
inertia are almost constant w.r.t. 6 (aside from small border effects, especially about
6 = 1), which indicates that the rearrangement of the mass is basically the same
at all scales. Therefore the microscopic and the macroscopic dynamics arising from
pedestrian interactions are compatible with each other and make possible a coupled
approach by scale interpolation.

" —a— I2: —B— |G: —a
" 1M —e— LigM—e—
e ::" i Ve'e{ 65 —lz" —— A / 1% |2“—o—
105 )/e/e/e/‘ / \9/‘ 170 e
100 /°/< ,l 60 > 160
= | -] - ol r

95 55 P 150 o
% =3 .\N"‘\»\yl 140 :.Z
85 e \E/ SOEJ\E\( /E/ﬁ/g 1308
g 45 i 120

Fi1G. 6.2. Test 1. Moments of inertia of the crowd distribution as functions of 6: (a) I{n‘ M, p
(b) I;ﬂ,MYH’ (c) IgL’M’M.

s
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F1G. 6.3. Test 1. Moments of inertia I}, Ig, I}, as functions of time for (a) 6 =0, (b) 6 = 0.3,
(c) 6 =1.

The graphs of Figure 6.3 show the trend of the mappings t + I3 for the three
values of 6 used in Figure 6.1, namely 6 = 0 (Figure 6.3(a)), § = 0.3 (Figure 6.3(b)),
and § = 1 (Figure 6.3(c)). As pointed out in the remark at the end of section 5, the
microscopic and the macroscopic scale always coexist and exchange information. In
particular, by comparing Figures 6.3(a) and 6.3(c) it can be noticed that no signifi-
cant qualitative and quantitative differences are observed, meaning that there is no
detachment of the two evolutions even when only one of them is actually the leading
one. Therefore, the scale coupling produces coherent results even when the dynamics
are fully ruled by either scale only. If this might be quite classical for the (Lagrangian)
evolution of microscopic particles driven by a macroscopic flow, we stress that it is
definitely by far less classical and obvious for the (Eulerian) evolution of a macroscopic
flow driven by microscopic particles.

Test 2: Average outflow time. In this test we address the case of a crowd
leaving a room through a door in normal (i.e., no panic) conditions, and we investigate
the influence of the coupled microscopic and macroscopic effects on the estimated
average outflow time. This will provide meaningful insights into the way in which
the microscopic granularity works within the macroscopic flow. The scenario of the
simulation is depicted in Figure 6.4(a) for the parameters listed in Table 6.1. The
(dimensionless) door width is 0.5.

Let Q := [0, 3] x [0, 4] be the room that pedestrians are leaving. We consider the
following average outflow time:

T
o L / tF(t) dt,
0

fo (2

~—

where F(t) is the integral flux through the door (taken positive when outgoing) at
time ¢. The final time 7" > 0 is chosen so large that the room is definitely empty; i.e.,
pr(€)) = 0. Considering that F(t) = —%ut(fl) and using integration-by-parts, T
can be given the following form:

T

(6.1) Tt = — = [ m(@at

o(£2) F

hence it is actually an outflow time weighted by the percent mass of crowd that, at
each time instant, still has to leave the room.
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Fic. 6.4. Test 2. (a) A crowd leaving a room through a door, initial condition (top) and un-
derway outflow (bottom). (b) Average outflow time as a function of 6 for a crowd of 10 pedestrians
and (c¢) 100 pedestrians.

The graphs of Figures 6.4(b,c) show the trend of the function 6 — T*  for a small
crowd of 10 pedestrians and a large crowd of 100 pedestrians. In both cases, the two
further curves 0 — T/ 6 +— T2 computed by replacing p; in (6.1) with either m;
or M, are plotted for suitable reference.

The trend of the T,y’s is qualitatively similar for both the small and the large
crowd, in particular it is decreasing with 6. This elucidates the role played by a
more and more influential microscopic granularity within the macroscopic flow: the
more the multiscale coupling is biased toward the microscopic scale, the more fluent
the crowd stream becomes (and consequently the average outflow time decreases).
This is justifiable considering that 6 can be viewed as the percent mass shifted from
the macroscopic to the microscopic scale in consequence of the multiscale coupling.
Subtracting interacting macroscopic mass from the system progressively reduces the
action of the macroscopic interactions while enhancing that of the microscopic ones.
Since the latter are less distributed in space, because the microscopic mass is clustered
in point singularities, this ultimately results in fewer deviations from the desired
velocity and the desired paths.

Test 3: Pedestrian flow through a bottleneck. In this test we investigate
the ability of the multiscale model to reproduce several flow conditions occurring when
two groups of pedestrians, walking toward one another, share a narrow passage (e.g.,
a door).

From the modeling point of view it is necessary to handle two interacting pop-
ulations of walkers, which will be done via two mass measures i, p = 1, 2, each
obeying (2.1). Either population has its own desired velocity v} and interacts with
the opposite population through the interaction velocity, which now depends on both
the p?’s. Specifically, denoting by p* the conjugate index* of population p, we set

(6.2) Py, ] = (1= @) [uf] + v iy ],
where
e P[] is the endogenous interaction, i.e., the interaction with pedestrians of

one’s own population;

4That is, p* =2if p=1and p* =1 if p = 2.
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Fi1c. 6.5. Test 3. Clogging at the bottleneck (left) and corresponding macroscopic fluzes (right)
arising with the fully macroscopic dynamics.
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F1a. 6.6. Test 3. Alternate flows at the bottleneck in the multiscale model (0 = 0.3). Negative
values of the density of the population walking rightward are for pictorial purposes only.

o PP [uf*] is the ezogenous interaction, i.e., the interaction with pedestrians
of the opposite population;
e © € [0, 1] is a dimensionless number fixing the strength of the exogenous
against the endogenous interaction.
Both the endogenous and the exogenous interaction velocities are formally computed
as in (2.6), except that the exogenous one is integrated w.r.t. u? ". In addition, the
exogenous interaction radius RPP" need not be the same as the endogenous one RP
if interactions with opposite walkers require more promptness than interactions with
group mates.”

For this test we let © = 0.65; thus 65% repulsion is exogenous and 35% is endoge-
nous. Repulsion radii are R? = 0.2, R,’fp* = 0.35, to be compared with the unit width
of the narrow passage. Other relevant parameters are listed in Table 6.1. In the figures
related to this test, the blue crowd with red microscopic pedestrians, say population
1, walks rightward whereas the yellow one with green microscopic pedestrians, say
population 2, walks leftward.

Let us begin from the case § = 0 with the macroscopic scale leading the dynamics.
The bottleneck tends to clog (Figure 6.5(a)): no density nor microscopic pedestrians

5This simply corresponds to the function f having different supports in the expressions of v? and
VPP,
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Fic. 6.8. Test 3. Alternate lanes through the bottleneck (left) and corresponding macroscopic
fluzes (right) emerging with the fully microscopic dynamics. Notice that both fluzes are identically
zero for t > 8 because by then both populations have completely flowed across the door.

flow through, except for a small mass passing initially when the passage is still free.
This is well confirmed by the time trend of the macroscopic flux across the bottleneck
(Figure 6.5(b)): that of population 2 is permanently zero for ¢ > 4.5, whereas that of
population 1 oscillates between small positive and negative values, which implies that
population 1 is pushed backward by population 2 as soon as it tries to cross.

By increasing 6 to an intermediate value between 0 and 1, a multiscale coupling
is realized. For # = 0.3, the resulting dynamics are depicted in Figure 6.6 and summa-
rized in Figure 6.7 by the time trend of the macroscopic and microscopic fluxes across
the bottleneck. The model reproduces now the oscillations of the passing direction at
the bottleneck described, e.g., in [14, 16, 17]. In more detail, starting from the initial
condition depicted in Figure 6.6(a), pedestrians of population 2 are induced to stop
at the bottleneck while those of population 1 go through at one side (Figure 6.6(b),
Figure 6.7 for 4.5 <t < 8.5). After some time, population 2 reorganizes and stops the
flow of population 1 (Figure 6.6(c), Figure 6.7 for 8.5 < t < 11); then its larger mass
stuck at the bottleneck gives it locally the necessary strength for repelling opposite
walkers and gaining room in the middle (Figure 6.6(d), Figure 6.7 for 11 < ¢ < 15).
Some walkers of population 1 remain trapped by the stream of population 2 and can-
not access the passage (Figure 6.6(e), Figure 6.7 for t &~ 15) until most of population
2 has flowed through (Figure 6.6(f), Figure 6.7 for 15 < ¢ < 17.5).

From the modeling point of view, the difference with the case # = 0 is that the
multiscale coupling shifts some macroscopic mass (30% in this example) onto the
microscopic pedestrians, all other parameters and initial conditions being unchanged.
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The inhomogeneous distribution of this microscopic mass induces a break of symmetry
between the interfacing populations, which finally leads to an alternate occupancy of
the passage according to the repulsion prevailing locally in space and time.

Setting # = 1, with the microscopic scale leading to the dynamics, produces
instead the outcome displayed in Figure 6.8. Now the microscopic granularity fully
dominates; hence the stream is the most fluent one (cf. also Test 2). As a result,
the bottleneck interferes less with the stream than in the previous cases, and the
model reproduces the alternate oppositely walking lanes (Figure 6.8(a)) extensively
observed as one of the main effects of self-organization in real crowds (cf. [17, 21]
and references therein). The time trend of the macroscopic flux across the bottleneck
(Figure 6.8(b)) confirms that the two populations flow simultaneously through the
passage, with comparable fluxes, in the interval 1.8 < ¢ < 8. After the time ¢t = 8
the macroscopic fluxes are identically zero because by then both populations have
completely flowed across the door.

Remark. Test 3 clearly indicates that the scale of representation can dramatically
affect the behavior of the crowd predicted by the model. In particular, different (pos-
sibly opposite) behaviors are caught at different scales by the very same model, all
being equally observable in practical situations. The question then arises if one can
individuate some physical criteria for selecting each time the appropriate value of the
multiscale parameter . We notice that this is a by far nontrivial issue, which would
call for a preliminary experimental characterization of this parameter, at present not
accessible. Nevertheless, some modeling guidelines can be outlined. Hints on the choice
of @ may come, first of all, from a dimensional analysis of the problem. For instance, if
the domain contains structural elements of size comparable to that of a single pedes-
trian (such as small obstacles, very narrow corridors or passages), then a value of
biased toward the microscopic scale may be suggested, at least locally in space. In
addition, since up to normalization the mass of the crowd can be understood as a
probability measure on R?, another criterion may be the uncertainty in evaluating
the positions of pedestrians or the inaccuracy by pedestrians themselves in locating
other suwrrounding walkers. The lower the uncertainty/inaccuracy the more concen-
trated the probability in Dirac masses; the higher the uncertainty/inaccuracy the
more distributed the probability in a spatial density.

Test 4: Macroscopic effect of a microscopic leader. In this last test we
outline a capability of the multiscale model, not yet highlighted so far, which will
surely deserve further investigation. More precisely, we are referring to the use of
the microscopic scale for modeling some features of the system which could not be
described in a purely macroscopic framework, but which nonetheless affect the macro-
scopic dynamics. This is essentially different from the previous tests, where the same
effects, such as repulsion and obstacle avoidance, were described at both scales. The
main novelty here is that the system includes a microscopic term with no macroscopic
counterpart.

We consider the case of a crowd following a leader, for instance a group of tourists
and their guide. The leader is a microscopic pedestrian who behaves in a different way
w.r.t. all of the other group members: she is the only one informed of the way to go;
hence she walks with a preassigned velocity (0.4i in this example) independently of the
others (i.e., she does not interact with the rest of the group). She only stops when her
distance from the group becomes too large. The followers have zero desired velocity,
because they are not informed of the way to go, and experience both frontal attraction
and frontal repulsion with their group mates, including the leader. (Like in Test 1,



MULTISCALE MODELING OF GRANULAR FLOWS 179

2 0.4 2 0.4
0.3 4 0.3
1 - 0.2 1L @l: ; 0.2
s
. A
L. 0.1 i 0.1
0 0 0 0
0 4 0 4
(a) (b)
2 0.4 2 0.4
0.3 0.3
iy rat . T
1+ & . 0.2 1+ 1 0.2
0.1 0.1
0 0 0 0
0 4 0 4

Fic. 6.9. Test 4. (a) initial condition, (b) the group assumes an elongated configuration, (c)
the group is formed and follows the leader, (d) the leader waits for the group while the group moves
on.

the angle oy, in (4.2) is computed by assuming conventionally vqes = 1). Attraction
acts against group dispersion, and is needed especially in order for the crowd to follow
the leader. Instead, repulsion is intended for collision avoidance among group mates.
The radii R,, R, are equal (cf. Table 6.1); in particular R, is so small that the tail
of group does not feel the leader ahead.

The group starts from the square-shaped distribution depicted in Figure 6.9(a),
with the leader in front. Then, after a transient (Figure 6.9(b)), it assumes a hori-
zontally elongated shape (Figure 6.9(c)) as a result of joint attractive and repulsive
effects. With no leader such a configuration would be an equilibrium, as attraction and
repulsion balance. However, as soon as the leader starts moving forward undisturbed,
pedestrians at the front, who can feel her directly, are attracted and move forward in
turn. At the same time, pedestrians at the rear are attracted toward group mates in
front. This makes the information on the way to go travel backward across the group,
which ultimately moves forward as a whole (Figure 6.9(d)).

It is worth stressing again that at the macroscopic scale there is no counterpart of
the microscopic leader. This implies that the macroscopic interaction velocity v[M;] is
not affected by the microscopic leader; therefore the macroscopic mass feels the latter
only through the microscopic interaction velocity v[my].

This test shows that our multiscale framework is suitable to reproduce a well
known feature of self-organizing groups, namely the fact that a small number of in-
formed agents can move the whole group in the desired direction [8]. In particular,
thanks to the multiscale coupling, this effect is appreciable also at the macroscopic
scale, which would not be suitable by itself to model differences among the individuals.

7. Conclusions and future research. In this paper we have presented a
measure-based multiscale method for modeling pedestrian flow. We point out that
neither a purely microscopic ODE-based approach nor a purely macroscopic PDE-
based approach is new in the literature for this kind of application. The novelty here



180 E. CRISTIANI, B. PICCOLI, AND A. TOSIN

is the way of coupling the two scales in a rigorous mathematical framework. This is
possible thanks to the measure-theoretic approach, which makes no a priori distinc-
tion between the scales, and to the fact that, by a proper scaling, the microscopic and
the macroscopic models can reproduce the flow of the same mass of pedestrians with
comparable outcomes (cf. the numerical test 1). We stress that introducing micro-
scopic heterogeneity in a macroscopic model is not straightforward. Adding random
disturbances to the macroscopic variables may lead to apparently good results but
it cannot be mathematically nor physically justified in an averaged context. Instead,
our method allows one to add granularity to the macroscopic flow and to preserve at
the same time physical meaning and mathematical rigor.

From the modeling side, it is worth noticing that a macroscopic model of pedes-
trian flow is useful to get overall distributed information, especially in connection with
design, control, and optimization issues. However, as demonstrated by our numerical
simulations, a certain amount of granularity is often crucial to catch some aspects of
self-organization in crowds triggered by the microscopic inhomogeneities of the flow
(cf. the numerical test 3). Of course, it has to be expected that the outcome at what-
ever scale partly depends on the tuning of the parameters of the model. Therefore, it
is not our purpose to state that the multiscale approach is always better (i.e., more
realistic) than either the microscopic or the macroscopic approach by itself. Rather
we believe that the proposed technique offers a convenient way to make the two scales
interact and jointly contribute to the final result.

The present form of our multiscale approach is mainly concerned with the same
mass of pedestrians modeled at both the microscopic and the macroscopic scales. The
multiscale coupling is then realized by scale interpolation. However, the numerical test
4 demonstrates that the framework is suitable also to model features at either scale,
which have no explicit counterpart at the other scale and nonetheless affect crucially
the overall dynamics.

As a research development, we plan to further generalize our multiscale approach
in this direction, having in mind specific applications related to traffic flow. Pedestrians
and cars share some relevant features, such as a desired velocity driving them toward
specific destinations and a frontally restricted visual field. Actually car movements
are much more constrained than pedestrians’, hence self-organization is more limited,
however not completely inhibited. For example, an application quite considered in the
technical literature [25, 26] concerns mixed traffic conditions with few mopeds within
a flow of cars.
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