
J Sci Comput (2010) 42: 251–273
DOI 10.1007/s10915-009-9329-6

An Efficient Data Structure and Accurate Scheme
to Solve Front Propagation Problems

O. Bokanowski · E. Cristiani · H. Zidani

Received: 14 November 2008 / Revised: 28 August 2009 / Accepted: 22 September 2009 /
Published online: 6 October 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper, we are interested in some front propagation problems coming from
control problems in d-dimensional spaces, with d ≥ 2. As opposed to the usual level set
method, we localize the front as a discontinuity of a characteristic function. The evolution of
the front is computed by solving an Hamilton-Jacobi-Bellman equation with discontinuous
data, discretized by means of the antidissipative Ultra Bee scheme.

We develop an efficient dynamic storage technique suitable for handling front evolutions
in large dimension. Then we propose a fast algorithm, showing its relevance on several
challenging tests in dimension d = 2,3,4. We also compare our method with the techniques
usually used in level set methods. Our approach leads to a computational cost as well as
a memory allocation scaling as O(Nnb) in most situations, where Nnb is the number of
grid nodes around the front. Moreover, we show on several examples the accuracy of our
approach when compared with level set methods.

Keywords Ultra Bee scheme · Narrow band method · Sparse matrices · Data storage ·
Hamilton-Jacobi-Bellman equations · Front propagation · Level set methods

O. Bokanowski (�)
Laboratoire Jacques-Louis Lions (UMR 7598), Université Paris 6, 75005 Paris, France
e-mail: boka@math.jussieu.fr

O. Bokanowski
UFR Mathématiques, Université Paris 7, 175 rue Chevaleret, 75013 Paris, France

E. Cristiani
CEMSAC, Università di Salerno, Salerno, Italy
e-mail: emiliano.cristiani@gmail.com

E. Cristiani
IAC-CNR, Rome, Italy

H. Zidani
Projet Commands, Ensta - Inria Saclay, 32 Bd Victor, 75379 Paris Cx 15, France
e-mail: Hasnaa.Zidani@ensta.fr

mailto:boka@math.jussieu.fr
mailto:emiliano.cristiani@gmail.com
mailto:Hasnaa.Zidani@ensta.fr

252 J Sci Comput (2010) 42: 251–273

1 Introduction

This paper is devoted to the study of an efficient numerical technique for coding front prop-
agation in high dimension coming from some optimal control problems.

The idea of level set formulation to propagate curves and surfaces has been introduced
in [25] by Osher and Sethian. The advantages of this approach are well known by now.
It treats self-intersections, topological changes, kinks, and it is easily extended to capture
hypersurfaces in R

d , d ≥ 1.
Let us consider a closed moving front �t , t ≥ 0, and let �t be the closed region that �t

encloses (i.e. here �t is closed and such that �t = ∂�t). The level set method aims to find
a function u(t, x) such that at each time t the front �t can be provided by the 0-level set of
the function u(t, ·), and we have:

u(t, x) = 0 ⇔ x ∈ �t ,

u(t, x) < 0 ⇔ x ∈ Int(�t),

u(t, x) > 0 ⇔ x ∈ �c
t .

Moreover, the function x �→ u(t, x) is uniformly continuous and it increases as the distance
between x and �t increases. It is known [29] that u can be obtained by solving a time-
dependent Hamilton-Jacobi (HJ) equation with continuous initial datum ϕ vanishing only
on the initial front �0, ϕ < 0 in Int(�0), ϕ > 0 in �c

0, and ϕ is a strictly non-decreasing
function of the distance to �0. Many numerical studies have been carried out to construct
stable, accurate and efficient methods. See [18, 25, 26, 30] for a description of such methods
on regular grids, and [1, 2] on triangular meshes. It is known that in general, once initialized
ϕ as the signed distance function to �0, it is impossible to maintain the level set function as
the signed distance function to the moving interface in the advection step. Flat and/or steep
regions develop as the interface moves rendering the computation and the localization of the
front inaccurate. For this reason, it is necessary to reset the level set function, at regular time
intervals, to be the signed distance function to the interface. This step of reinitialization was
investigated in [17, 27, 31].

As pointed out in [3], an important drawback of the level set approach “stems from the
expense; by embedding the interface in R

d as the level set of a d + 1-dimensional function,
considerable computational labor is required per time step”. To overcome this difficulty,
Adalsteinsson and Sethian [3] suggest a localization of the level set method. This method
allows to compute the evolution of the level set function only in a neighborhood around the
front. Another fast local level set method has been also proposed by Peng et al. in [27]. How-
ever, in [3] as well in [27] a full d-dimensional matrix is stored, which limits the methods.

In our work, we use a different approach (see Fig. 1). We seek a discontinuous function
ϑ(t, x) which takes only values in {−1,1}

ϑ(t, x) = −1 ⇔ x ∈ �t,

ϑ(t, x) = 1 ⇔ x ∈ �c
t .

The notion of lower semicontinuous (l.s.c.) viscosity solution [4, 16] leads also to a charac-
terization of ϑ by means of a Hamilton-Jacobi-Bellman (HJB) equation with discontinuous
initial datum ϕ given by

ϕ(y) =
{

−1 if y ∈ �0,

1 otherwise.

J Sci Comput (2010) 42: 251–273 253

Fig. 1 Discontinuous approach (left) vs. level set approach (right)

Fig. 2 Full (left) and sparse (right) matrix coding

Thus it is natural to concentrate the numerical effort only around the front separating the
area of −1 values (�t) from the region of 1 values. For this, we need two ingredients, the
first one is a scheme able to compute the front with a good accuracy without diffusion and
the second one (as important as the first one) is an efficient way to store and handle only the
nodes around the front.

The scheme we consider here is an adaptation of the Ultra Bee scheme used by Desprès
and Lagoutiè for linear advection and conservation laws [14, 15, 19, 20]. An extension in
order to treat HJB equations was proposed in [12], numerically showing very good anti-
diffusive properties in one and two dimensions (see also [9] for computation of the Capture
Basin). Convergence results for 1-dimensional HJB equations have been obtained in [8, 11],
where an error bound of order �x (the spatial mesh step) in L1 norm for general bounded
l.s.c. initial data is obtained, also proving anti-diffusive properties in particular cases.

In the 2-dimensional case, the Ultra Bee scheme computes values V n
i,j which approximate

1
�x�y

∫
Iij

ϑ(tn, x, y) dx dy, where Ii,j is a cell associated to (i, j) and tn is a discrete time.
Since ϑ takes values in {−1,1}, the discrete approximations V n

i,j will belong to the interval
[−1,1].

The full matrix (V n
ij) is represented in Fig. 2 (left), where values are drawn in white for

−1, black for 1, and gray for intermediary values. However, instead of coding the matrix
(V n

ij) we can use a sparse matrix where only the values V n
ij ∈]−1,1[are coded, as well as

their first neighboring values, leading to a sparse structure as illustrated in Fig. 2 (right).
In this paper we use an adapted sparse matrix structure in order to store the discrete front.

Note that the idea of using a sparse structure was tested for instance in [22] for d = 2,3

254 J Sci Comput (2010) 42: 251–273

(a quadtree structure was also tested in [10]). However, in these attempts the CPU time is
not growing as O(Nnb), where Nnb is the number of nodes in the “narrow band” around the
front.

In the literature, several techniques for storing sparse matrices have been studied
[5, 28]. These techniques are usually designed to handle standard algebraic computations
(for instance, product of matrices). For our purposes, a “good” storage technique should be
fast for finding a nonempty value as well as its first neighboring values, and for adding (or
removing) nonempty values in the sparse matrix.

Here we shall propose a new storage technique for sparse matrices, and compare it with
known storage techniques strategies.

While the worst case complexity of the scheme is no better than dense implementations,
in practice it often achieves significant savings O(Nnb), for both memory and CPU time.
The advantage of the sparse storage technique we propose is that it can handle larger data
sets than other known methods.

The combination of the Ultra Bee scheme and the sparse storage allows us to obtain
an efficient algorithm that is able to treat “high-dimensional” problems. We also obtain on
some specific examples better results than a traditional level set solver. Finally we mention
that the algorithm is quite simple and does not need special features such as reinitialization.

The paper is organized as follows. In Sect. 2 we recall the HJB equation for ϑ and the
Ultra Bee scheme. Section 3 is devoted to the presentation of the sparse dynamic data struc-
ture, and to extensive comparisons with other techniques. Section 4 is devoted to numerical
examples for the HJB equation. Comparison between the discontinuous approach and the
level set approach will be also given.

More applied examples will be treated in a forthcoming work.

2 Preliminaries

2.1 Motivations and Setting of the Problem

Let �0 be a compact set of R
d , and f : R

+ × R
d × R

m → R
d be a continuous function. We

are interested by fast and efficient numerical methods for Hamilton-Jacobi equations of the
form: {

ϑt(t, x) + maxa∈A(x){−f (t, x, a) · ∇ϑ(t, x)} = 0, t > 0, x ∈ R
d ,

ϑ(0, x) = ϕ(x), x ∈ R
d ,

(1)

where ϕ is given by

ϕ(x) =
{

−1 if x ∈ �0,

1 otherwise,

and A(x) is a nonempty compact subset of R
m, for m ≥ 1. The function ϑ is obviously

discontinuous. Nevertheless, the solution of (1) is well defined by the notion of lower semi-
continuous solution introduced by Barron and Jensen [6] (see also [4, 16]).

At each time t > 0, the boundary of the set of −1 values of ϑ(t, ·) represents the front �t

which results from the propagation of the initial front �0 := ∂�0.
Equation (1) models several problems. Let us see some examples.

J Sci Comput (2010) 42: 251–273 255

2.1.1 Advection Equation

The simplest situation consists in taking

A(x) = {a} and f (t, x, a) = f (t, x).

Then (1) can simply be rewritten as:

ϑt (t, x) + f (t, x) · ∇ϑ(t, x) = 0, t > 0, x ∈ R
d , ϑ(0, x) = ϕ(x), x ∈ R

d .

Here the region �0 is advected with the velocity f .

2.1.2 Eikonal Equation

Let us denote by B(0,1) the closed unit ball of R
d . If we set

A(x) = B(0,1) and f (t, x, a) = F(x)a,

where F is a positive function, then we get the Eikonal equation

ϑt(t, x) + F(x)‖∇ϑ(t, x)‖ = 0, t > 0, x ∈ R
d , ϑ(0, x) = ϕ(x), x ∈ R

d .

The framework of (1) includes also the case of anisotropic propagation. However, it does
not include propagation problems with motion by mean curvature.

2.1.3 Target Problem: Capture Basin (or Backward Reachable Set)

Now we assume that C := �0 is a target. We consider a dynamical system described by the
following differential equation:

ξ̇ (t) = f (ξ(t), α(t)), for a.e. t ≥ 0,

ξ(0) = x,
(2)

where a ∈ L∞([0,∞[;A) and A is a compact subset of R
m (with m ≥ 1). The Capture Basin

(or backward reachable set) associated to C is defined as the set of all the initial conditions
x ∈ R

d from which it is possible to find an admissible trajectory ξx , solution of (2), reaching
the target C before time t ≥ 0:

Captt (C) := {x ∈ R
d : ∃(ξx, α) satisfying (2) and ∃0 ≤ τ ≤ t s.t. ξx(τ) ∈ C}.

We define the reachability function ϑ(t, x) by

ϑ(t, x) :=
{

−1 if x ∈ Captt (C),

1 otherwise.
(3)

256 J Sci Comput (2010) 42: 251–273

Under usual assumptions1 on f , we can characterize ϑ as the unique lower semicontinuous
solution of the following HJB equation (by adapting the arguments of [23], see also [22]){

ϑt (t, x) + max(0, maxa∈A{−f (x, a) · ∇ϑ(t, x)}) = 0, t > 0, x ∈ R
d ,

ϑ(0, x) = ϕ(x), x ∈ R
d ,

(4)

where

ϕ(x) :=
{

−1 if x ∈ C,

1 otherwise.

Moreover, from ϑ it is possible to recover the minimal time function T defined by

T (x) := min{t ≥ 0 : ∃a ∈ L∞([0, t];A) s.t. ξx(t) ∈ C}
by means of the following expression

T (x) = min{t ≥ 0, ϑ(t, x) = −1},
with the convention that T (x) = +∞, whenever {t ≥ 0, ϑ(t, x) = −1} = ∅. This result is
straightforward and was already stated in the continuous level set setting [24].

2.1.4 Rendez-Vous Problem

Suppose we want to find out if we can reach the target exactly at time t and not only “before
time t”. Then instead of (3), we can consider the following definition:

ϑ(t, x) :=
{

−1 if ∃α ∈ L∞([0, t],A) s.t. ξx(t) ∈ C,

1 otherwise.
(5)

It is proved in [16] (see also [6]) that ϑ is the solution of the following HJB equation:{
ϑt(t, x) + maxa∈A{−f (x, a) · ∇ϑ(t, x)} = 0, t > 0, x ∈ R

d ,

ϑ(0, x) = ϕ(x), x ∈ R
d ,

(6)

which is still is a particular case of (1).

Remark 2.1 For time optimal control problems, in order to reconstruct the optimal trajec-
tories (see [4, Appendix by Falcone]) it is necessary to know the minimal time function T
on all over the domain, and not only around the front at the final time. In practice we can
compute the solution ϑ together with the minimum time function T : the values of T need
only to be saved on the hard disk during computation, before advancing the narrow band.
These values are not needed to compute ϑ , and their storage on the hard disk do not reduce

1(i) The function f : R
d ×A → R

d is continuous; (ii) F(x) := {f (x, a), a ∈ A} is convex compact for all x;
(iii) There exists co ≥ 0 s.t. supa∈A |f (ξ, a)| ≤ co(1 + |ξ |); (iv) For every R ≥ 0, there exists LR ≥ 0, such
that

∀y, z ∈ B(0,R), sup
a∈A

|f (y, a) − f (z, a)| ≤ LR |y − z|.

J Sci Comput (2010) 42: 251–273 257

the maximal admissible size of the problem which is limited by the RAM’s size. (On the
contrary, an approach which needs to store the full matrix to make computation will be lim-
ited by the RAM memory.) On going work based on the present approach (see [7]) focuses
on minimal time function computation and optimal trajectory reconstruction for an optimal
control problem including state constraints.

2.2 Ultra Bee Scheme

We recall here the Ultra Bee (UB) scheme for solving the HJB equation (1). This scheme
was first studied for advection equations with constant velocity [15] (in this context, the
scheme is exact). A generalization of the scheme to advection equations with changing-sign
velocity is suggested in [12], where the properties and the convergence result are proved in
dimension 1. The adaptation of the scheme to solve HJB equations is done in [9] (some con-
vergence results are proved in [11]). Now we present directly the algorithm in dimension 2.

Let �t > 0 be a constant time step, and tn := n�t for n ≥ 0. Let �x > 0 be a step size of
a spatial grid, and let ξi,j := (xi, yj) := (i �x, j �x) denote a uniform mesh, with i, j ∈ Z.
Let us also define

xi+ 1
2

:=
(

i + 1

2

)
�x, yj+ 1

2
:=

(
j + 1

2

)
�x and

Iij :=]
xi− 1

2
, xi+ 1

2

[×]
yj− 1

2
, yj+ 1

2

[
.

The Ultra Bee scheme aims at computing a numerical approximation of the averages V n
i,j :=

1
�x2

∫
Iij

ϑ(tn, ξ) dξ , for i, j ∈ Z. Since the function ϑ(tn, ·) takes only values in {−1,1},
their averages V n

i,j contain the information of the discontinuities localization. The UB-HJB

scheme, for the discretization of (1), takes the following form (when there is no ambiguity,
we shall omit the time dependence in f and denote f (ξij , a) instead of f (tn, ξij , a)) :

V n+1
i,j − V n

i,j

�t
+ max

a∈A

(−f (ξi,j , a)
[
DUB

a V n
]
ij

) = 0, (7a)

with the initialization

V 0
i,j := 1

�x2

∫
Iij

ϕ(ξ) dξ, (7b)

where [DUB
a V n] will play the role of a consistent approximation of the term ∇ϑ(tn, ·). To

define precisely this approximation, let us first introduce, for j ∈ Z, the fluxes WR
j − 1

2 and
WL

j + 1
2 for a one-dimensional vector (Wj)j∈Z and for real numbers (μj)j∈Z ∈ [−1,1], as

follows:

• If μj ≥ 0, set

WL

j+ 1
2

:=

⎧⎪⎨
⎪⎩

min(max(Wj+1, b
+
j),B+

j,) if μj > 0,

Wj+1 if μj = 0 and Wj �= V n
j−1,

Wj if μj = 0 and Wj = V n
j−1.

• If μj ≤ 0, set

WR
j−1/2 :=

⎧⎪⎨
⎪⎩

min(max(Wj−1, b
−
j),B−

j) if μj < 0,

Wj−1 if μj = 0 and Wj �= V n
j+1,

Wj if μj = 0 and Wj = V n
j+1,

258 J Sci Comput (2010) 42: 251–273

where b+
j , b−

j , B+
j and B−

j are defined in (9a)–(9b).
• If μj ≥ 0 and μj+1 > 0, set WR

j+ 1
2

:= WL

j+ 1
2
.

• If μj+1 ≤ 0 and μj < 0, set WL

j+ 1
2

:= WR

j+ 1
2
.

• If μj < 0 and μj+1 > 0, then set

WR

j+ 1
2

:=
{

Wj+1 if Wj+1 = Wj+2,

Wj otherwise
and WL

j+ 1
2

:=
{

Wj if Wj = Wj−1,

Wj+1 otherwise.
(8)

With

if μj > 0,

⎧⎨
⎩

b+
j := max(Wj ,Wj−1) + 1

μj
(Wj − max(Wj ,Wj−1)),

B+
j := min(Wj ,Wj−1) + 1

μj
(Wj − min(Wj ,Wj−1)),

(9a)

if μj < 0,

⎧⎨
⎩

b−
j := max(Wj ,Wj+1) + 1

|μj | (Wj − max(Wj ,Wj+1)),

B−
j := min(Wj ,Wj+1) + 1

|μj | (Wj − min(Wj ,Wj+1)).
(9b)

We also use in the sequel the notations FR and FL defined by:

FL(W,μ)j + 1

2
:= WL

j+ 1
2

and FR(W,μ)j− 1
2

:= WR

j− 1
2
.

For every (i, j) ∈ Z × Z and every α ∈ A(ξi,j), we define

ν1
i,j (α) := �t

�x
f1(ξi,j , α), ν2

i,j (α) := �t

�x
f2(ξi,j , α),

as the local CFL number. In the following we assume that the mesh sizes satisfy the follow-
ing condition:

CFL := max

(
�t

�x
|f1(ξi,j , α)|, �t

�x
|f2(ξi,j , α)|

)
≤ 1. (10)

Now, we define the UB-HJB scheme for (1) as follows (see [11, 12]).

Algorithm UB-HJB

Initialization: We compute the initial averages (V 0
ij)i,j∈Z as in (7b).

Loop: For n ≥ 0,

For α ∈ A, for j ∈ Z, evolve in the x1-direction

V
n,1
i,j (a) := V n

i,j − �t

�x
f1(ξi,j , a)

(
FL

(
V n

·,j , ν
1
·,j (a)

)
i+ 1

2
− FR

(
V n

·,j , ν
1
·,j (a)

)
i− 1

2

)
,

∀i ∈ Z,

where V n
·,j = (V n

i,j)i∈Z. Then, for i ∈ Z, evolve in the x2-direction

V n+1
i,j (a) := V

n,1
i,j − �t

�x
f2(ξi,j , a)

(
FL

(
V

n,1
i,· , ν2

i,·(a)
)
j+ 1

2
− FR

(
V

n,1
i,· , ν2

i,·(a)
)
j− 1

2

)
,

∀j ∈ Z,

J Sci Comput (2010) 42: 251–273 259

where V
n,1
i,· = (V

n,1
i,j)j∈Z.

Set V n+1
i,j := mina∈A(ξi,j)(V

n+1
i,j (a)).

Remark 2.2 A general version of the Ultra Bee scheme, for 1-dimensional problems, is
given in [11], for any l.s.c. initial condition in L1

loc(R). Here, the algorithm is specified to
the case of an initial condition taking values only in {−1,1}.

In [20], the author proved the very interesting property that the Ultra Bee scheme advects
exactly a particular class of step functions, in the case of constant advection. We refer to [15,
20] for other properties.

3 Storage Data Structure

In this section we introduce the new data structure we will use with the Ultra Bee scheme
to solve numerically (1) in high dimension. The goal is to construct a data structure which
allows to save memory and to keep acceptable CPU times.

All the numerical results have been obtained on a 2×2GHz processor (AMD Turion(tm)
64 X2 Mobile Technology), 4GB RAM, on a laptop computer with Mandriva Linux release
2008.1. Codes are written in C++ (serial) with GNU gcc compiler.

3.1 Some Known Storage Techniques

First, we recall some classical storage methods. The word “full” will refer to the methods
in which every element is stored (using a full matrix), while in the other methods sparse
storage techniques are used.

Full Storage (FS): A full d-dimensional matrix is stored, it contains all the values of the
function at each grid node. The computation is performed on all over the grid, at each time
step. Searching for neighbors is very fast because we have a direct access to each element of
the matrix. On the other hand the computation is slow, because at each time step we compute
on the full matrix. This is the simplest method to be implemented because there is no need
to track the front during its evolution.

Full & List Storage (FLS): this is the classical Narrow Band method (see [3]). A full
matrix is stored as in FS, but it is also stored a dynamic linked list which contains the indexes
of the nodes around the front, that is the zone where we want to compute the solution at each
time step. The list must be updated in such a way it follows the front during its evolution. It
is not needed to keep the list sorted in any way. Searching for neighbors is done using the
full matrix.

List Storage (LS): A dynamic linked list containing the indexes and the values of the
nodes around the front is stored, ordered for example in a row-wise fashion with respect to
the full matrix (not stored here). Each element of the list has a pointer to the next and to the
previous element, so the search for neighbors is done going forward and backward in the list.
Moreover, in dimension 2, the indexes (i, j) of a node are “compressed” in only one index
k to save memory defining k = iN + j where N is the number of columns. This procedure
to “compress” the indexes is easily generalizable to any dimension, provided N and d are
not too large (otherwise the integer runs out of bits). This is the best method for memory
allocation (see [28] for a detailed presentation and comparisons with other methods).

Compressed Row Storage (CRS): This is probably the most common method to store
sparse matrices. We use here a slightly different version of the CRS method, substituting

260 J Sci Comput (2010) 42: 251–273

static vectors by linked lists to allow resize when needed. As in LS, the full matrix is not
stored. See [21] for an explanation of the method in dimension d ≥ 2 and an improvement
of the basic method for matrix-matrix addition and multiplication.

3.2 The Sparse Semi-Dynamic Data Structure

Now, we introduce what we will call the Sparse Semi-Dynamic (SSD) structure, beginning
from the case d = 2. Let us consider without loss of generality a square domain in which the
computation is performed. Let M be the N × N matrix which corresponds to the domain.
We store a (static) vector p = (p1, . . . , pN) of pointers such that every pointer pi is the
beginning of a linked list which corresponds to the i-th line of the matrix (not stored), see
Fig. 3. Every list is made by elements which contain only the index j and the value of the
nodes we want to store in the structure (that is the nodes around the front). The elements are
ordered by increasing j ’s. Note that if a line does not contain any node around the front the
corresponding pointer points to NULL. In this way we store only nodes we are interested
in and, at the same time, we have a direct access to every line of the matrix, so that we
can quickly and easily search for neighbors of a given node. For d = 2 this data structure
corresponds to a dynamic version of the CRS method.

In the d-dimensional version of the algorithm the full matrix (not stored) has Nd ele-
ments. Then we consider a Nd−1-dimensional matrix of pointers. As before, every pointer
is the beginning of a list which runs parallel to the last dimension of the matrix, containing
all the nodes around the front (see Fig. 4). Note that in the SSD method every element of the
lists has only the fields lastindex and value. The first d − 1 indexes can be recovered by the
pointer we are currently using to run throughout the structure.

For d ≥ 3 our method differs from CRS. To understand the difference, let us focus on
the case d = 3. The proposed method, for any couple of indexes (i, j), stores a list corre-
sponding to the indexes k. On the contrary, the CRS method for any index i stores a list
corresponding to the couple of indexes (j, k).

Remark 3.1 We can also consider a slightly different storage method, which is a variation
of the SSD and that allows to save more memory allocation. The basic idea is that, in the 2D
structure of Fig. 3, it is not necessary to store pointers which point to NULL. In this case the
vector containing the pointers is substituted by a linked list similar to those containing the
values of the nodes. This modification yields to a more complex numerical code. We have
verified experimentally that the CPU time is smaller for d = 2, but not always for d > 2.

Fig. 3 A sparse semi-dynamic linked structure storing the nodes

J Sci Comput (2010) 42: 251–273 261

Fig. 4 SSD structure in three
dimensions

Fig. 5 Fronts for example 1 (left) and example 2 (right)

3.3 Comparisons

We now compare the previous storing data structures. We focus on searching neighbors, and
on updating the data structures (inserting/removing elements).

Let �t be the front at a given time t . We define F+(t) (resp. F−(t)) as the set of nodes
which are external (resp. internal) to �t with at least one neighbor internal (resp. external)
to �t . Here by means of “neighbors” we intend the adjacent nodes in the coordinated direc-
tions (i.e. we do not consider the adjacent nodes along the diagonal directions). In all cases
but FS and FLS the data structure contains only the nodes in F+ ∪ F−. We set the value of
the node in F± equal to ±1. All other values are set to ND (Not Declared).

We will consider two different configurations for the initial front �0 (see Fig. 5):

• Example 1: �0 is composed by 6 circles (spheres for d = 3, hyperspheres for d = 4) one
inside the other. This case is interesting because of the large number of nodes in F+ ∪F−.

• Example 2: �0 is a rectangle (cylinder for d = 3, hypercylinder for d = 4) with the longest
dimension aligned to the d-th one.

262 J Sci Comput (2010) 42: 251–273

Table 1 CPU times for neighbor searching, Example 1

d Nd Nnb FS FLS Order LS Order CRS Order SSD Order

2 4002 7104 1.2e−3 1.1e−4 2.6e−3 2.8e−3 2.8e−3

2 8002 14 232 5.0e−3 3.4e−4 3.1 5.3e−3 2.0 5.7e−3 2.0 5.7e−3 2.0

2 16002 28 488 2.0e−2 1.3e−3 3.8 1.1e−2 2.1 1.2e−2 2.1 1.2e−2 2.1

3 1003 104 576 1.3e−2 3.2e−3 1.6e0 2.4e0 2.0e−2

3 2003 423 704 1.1e−1 2.0e−2 6.2 1.3e1 8.1 1.9e1 7.9 8.3e−2 4.0

3 4003 1 702 192 9.3e−1 9.0e−2 4.5 1.0e2 7.7 1.5e2 7.9 3.4e−1 4.2

3 8003 6 826 816 Out of mem. Out of mem. – >1e3 – >1e3 – 1.8e0 4.1

4 254 78 704 7.2e−3 2.7e−3 4.2e0 8.1e0 2.1e−2

4 504 674 064 1.2e−2 2.6e−2 9.6 1.5e2 35.7 3.1e2 38.2 1.9e−1 9.0

4 1004 5 549 888 2.1e0 3.1e−1 11.9 >1e3 – >1e3 – 1.4e0 7.1

4 2004 45 098 160 Out of mem. Out of mem. – >1e3 – >1e3 – 1.2e1 8.4

Table 2 CPU times for neighbor searching, Example 2

d Nd Nnb FLS Order SSD Order

3 1003 13 560 4.3e−4 6.6e−3

3 2003 55 808 2.2e−3 5.1 4.5e−2 6.8

3 4003 222 480 6.6e−3 3.0 3.3e−1 7.3

3 8003 894 056 Out of mem. – 3.0e0 9.0

4 254 4 392 1.4e−4 2.8e−3

4 504 35 776 1.0e−3 7.1 3.4e−2 12.1

4 1004 297 200 1.0e−2 10.0 4.8e−1 14.1

4 2004 2 450 144 Out of mem. – 5.9e0 12.3

All the tests are performed on uniform Cartesian grids on the box [−2,2]d . We consider
the same number N of points in each axis (Nd is the total number of grid nodes). We denote
by Nnb the number of nodes in F+ ∪ F− (nodes in the narrow band).

3.3.1 Comparisons for Searching Neighbors

In this test we measure the CPU time (in seconds) needed to search the value of the 2d

neighbors (with d = 2,3,4) of all the nodes in F+ ∪ F−. The position of the front is fixed
(so the data structure is not updated). Results are reported in Tables 1 and 2.

We recall that the time for the FS method include all neighbors of all nodes, not just
F+ ∪ F−.

We can see that FLS is the fastest method because computation is restricted to a nar-
row band around the front and the research of neighbors is done by using the full matrix.
However FLS cannot be used when the number of grid nodes is too large.

In dimension 2, the SSD method coincides with CRS, and their performances are very
similar to that of LS. However, as the dimension increases, the difference between these
methods becomes larger and larger and the SSD seems to be the only sparse method able to
find neighbors in reasonable time.

J Sci Comput (2010) 42: 251–273 263

Table 3 CPU times for updating the data structure, 3-dimensional examples

Ex. N3 Nnb FLS Order LS Order CRS Order SSD Order

1 503 25 672 5.3e−3 1.8e−1 2.3e−1 1.1e−2

1 1003 104 576 2.3e−2 4.3 1.3e0 7.2 2.0e0 8.7 4.9e−2 4.4

1 2003 423 704 1.0e−1 4.3 1.0e1 7.7 1.7e1 8.5 2.2e−1 4.5

1 4003 1 702 192 4.5e−1 4.5 8.1e1 8.1 1.3e2 7.6 8.9e−1 4.0

1 8003 6 826 816 Out of mem. – 6.6e2 8.2 >1e3 – 3.8e 0 4.3

2 503 3 272 5.0e−4 1.3e−3 3.3e−3 1.3e−3

2 1003 13 560 2.0e−3 4.0 9.6e−2 7.3 3.7e−2 11.2 6.6e−3 6.2

2 2003 55 808 8.9e−3 4.4 1.3e−1 13.5 4.9e−1 12.9 3.9e−2 7.1

2 4003 222 480 3.7e−2 4.1 1.8e0 13.6 5.8e0 12.0 3.0e−1 7.4

2 8003 894 056 Out of mem. – 4.2e1 24.1 7.3e1 12.5 2.9e 0 9.8

In Example 1 (see Table 1), we remark that the cost for searching neighbors with the
SSD method is of the expected order O(Nnb) = O(Nd−1). The scaling of LS or CRS is not
as good as SSD, because it uses a usual sparse matrix structure that have slower neighbor
searching of order O(Nd). For Example 2, we have numerically observed that the scaling
factor of the SSD method remains better then the one of LS or CRS. However, this is the
worst situation for SSD in the sense that it does not behave as O(Nd−1).

On the other hand, if it is known a priori that the front has a dimension predominant over
the others, by swapping two coordinates we could easily avoid the worse case for SSD.

3.3.2 Comparison for Updating the Data Structure

Now we compare the CPU time needed to update the data structure. This step consists in
inserting and removing nodes, without searching for neighbors. More precisely, we insert
all the neighbors of the nodes in F+ having value ND and remove all the nodes in F−. This
simulates an update step for an expanding front.

FS is not considered here because it does not need an update procedure. In FLS we do not
keep the list sorted, we just add the new nodes at the beginning of the list. The full matrix is
used to check if a node to be inserted is already in the list. We perform the tests on the two
examples as before, in the case d = 3. Results are summarized in Table 3.

The FLS is clearly the fastest method but it needs much more memory than the sparse
methods. SSD greatly overcomes the LS and CRS methods in any test, being only two times
slower than FLS in normal situations (Example 1). We shall see in Sect. 3.5 a concrete
example where SSD compares to FLS.

3.4 Comments on CPU Time and Memory Allocation

In the SSD structure, although the search for a neighboring value can have a cost up to O(N)

(in the worst case), as well as for updating (adding or removing a node at a given location),
we observe in general an order O(1) for a “standard” front propagation problem. Therefore
for a narrow band of size Nnb = O(Nd−1), we obtain the CPU time of order O(Nd−1) in
most cases. This will be also exemplified in the following tests (see also next section).

Regarding the size of the front, FS and FLS require a memory allocation of order O(Nd),
while LS, CRS and SSD are all of order O(Nnb), which is in general O(Nd−1).

More precisely, FS and FLS require to store, during all the computation process, a Nd -
matrix for the values (V n

i) which are real variables (often double precision), while SSD

264 J Sci Comput (2010) 42: 251–273

Table 4 Memory used in the case of Example 1 and with d = 3 (in Megabytes)

d Nd FS Order FLS Order LS Order CRS Order SSD Order

3 1003 9.0 9.0 0.9 0.9 1.8

3 2003 63.3 7.0 64.2 7.1 1.8 2.0 1.8 2.0 3.6 2.0

3 4003 500.7 7.9 502.5 7.8 6.3 3.5 6.3 3.5 10.8 3.0

3 8003 Out of mem. Out of mem. 21.7 3.4 21.7 3.4 38.9 3.6

requires only to store a Nd−1-matrix of pointers plus Nnb pointers, Nnb integers and Nnb

reals in the dynamic part of the structure.
In Table 4, we give the memory used for the various methods in the case of Example 1

and for dimension d = 3. We observe the expected scalings of the methods (which should
be 4 for the sparse methods). We see that SSD is a little bit more costly than LS and CRS
methods (because it has to store furthermore a matrix of Nd−1 pointers) but also that it is far
less costly than the full methods.

We also see the memory limitation of the full methods: for d = 3, we could not go further
N = 500 approximately (resp. N = 110 for d = 4).

3.5 The Sparse Semi-Dynamic Storage for HJB Equations

When using a data structure which does not contain all the nodes of the grid we have to
be sure that either the data structure contains all the nodes used for computation or we can
recover the values of the nodes even if they are not stored in the data structure.

We know that the function ϑ takes value in the set {−1,1}, so the numerical solution V

takes value in the set [−1,1] because it represents an average of the function ϑ . So, at every
time step n, the front is localized in the set of nodes {I : V n

I ∈ (−1,1)} and around this
region there is a 1-node thick band where V n = −1 (internal to the front) and a 1-node thick
band where V n = 1 (external to the front), see Fig. 2. Only these nodes are stored in the
data structure, but they are not enough to perform computation with the UB-HJB scheme.
The not stored values can be recovered by the existing ones by the following strategy: if a
node is both a neighbor of a node with value −1 (resp., 1) and it is not stored in the data
structure, then its value is −1 (resp., 1).

Let Dn be the set of nodes stored in the data structure at time step tn. Let I be a generic
node of the grid and Neigh(I) be the set of the 3d − 1 neighbors of the node I (from now
on we have to include also the diagonal directions as required in the UB-HJB scheme). At
each time step, Dn must first be updated in order to follow the evolution of the front. Then
we set

Dn+ 1
2 := Dn ∪ Neigh(Dn).

In order to maintain the data structure as slim as possible, after each computation (at every
time step) we remove from the data structure the set of nodes whose value is either −1 or 1
and it is equal to the values of the neighbors:

Rn := {
I : V n

I = −1 or 1, and V n
I = V n

J , ∀J ∈ Neigh(I)
}
.

Thus, Dn+1 := Dn+ 1
2 \ Rn.

Now we apply the new data structure to a test problem, solving a simple HJB equation in
the form of (4). We set d = 3 and f (x, y, z, a) = (a,1,1)T. For testing, we consider Na = 11

J Sci Comput (2010) 42: 251–273 265

Table 5 HJB equation, CPU time for one time step (seconds)

N3 |D0| FLS Order SSD Order

503 8016 0.07 0.08

1003 31 416 0.23 3.2 0.37 4.6

2003 125 968 0.96 4.2 1.45 3.9

4003 502 368 5.75 6.0 6.52 4.5

8003 2 011 032 Out of mem. 27.2 4.1

16003 8 043 808 Out of mem. 113.4 4.1

discrete control variables ai ∈ [−1,1] defined by ai = −1+2i/(Na −1), i = 0, . . . ,Na −1.
The initial front (target) is the unit ball. Computation is performed in the box [−2,2]3. The
time step �t is computed so that the CFL number is 0.9.

The results are summarized in Table 5. We report the CPU time for one time step, without
considering the initialization of the data structures nor saving results on disk. |D0| is the
number of nodes used to locate the initial front. (We have excluded here FS because it is
clearly not efficient, as well as CRS and LS because previous tests showed that they are not
better than the SSD method.)

In this test, the SSD method shows an excellent behavior, with correct scaling, being able
to save memory without loosing too much rapidity. The FLS is the fastest method, but it is
out of memory as soon as the number of nodes is greater than 5003.

Also we have numerically observed that as the number of controls Na increases, SSD and
FLS have a tendency to have similar CPU times. This is because the cost of managing the
sparse structure becomes neglectable with respect to the computational cost for the scheme
and which is similar for both approaches.

4 Numerical Examples

In this section we test the UB-HJB scheme with the SSD structure on some numerical ex-
amples.

In all tests, we use a variable time step �t which is computed at each iteration to fit the
CFL condition (10) with respect to the nodes currently involved in the narrow band. We
have chosen CFL = 0.9 in all cases.

We shall also compare the results with the level set method based on a very simple RK2-
ENO2 solver (without reinitialization), following Osher and Shu [26], and which is a priori
second order in space and time.2 Even if this is certainly not the best level set solver we
think it is sufficient to illustrate the advantages (or drawbacks) of our UB-HJB discontinuous
approach with respect to a continuous level set approach, in particular when the front is not
smooth everywhere.

2In the one-dimensional case, we consider the approximation

v(xi)∂xu(xi) � max(v(xi),0)Du−
i

+ min(v(xi),0)Du+
i

where Du−
i

, Du+
i

are second order ENO approximations of the first derivative ∂xu. This is then coupled
with a Heun scheme in time (a second order Runge-Kutta scheme).

266 J Sci Comput (2010) 42: 251–273

Table 6 (Example 1) f = (−2,−1): error and total CPU time, T = 1. The L1 error is 0 for the UB-HJB
scheme because of an exact-advection property in this particular example

N2 UB-HJB Level set

CPU Order L1-error Haus. Haus./�x L1 error Haus. Haus./�x

502 0.01 0.000 0.044 0.55 0.185 0.158 1.97

1002 0.03 3.0 0.000 0.020 0.50 0.177 0.101 2.52

2002 0.13 4.3 0.000 0.014 0.70 0.020 0.064 3.20

4002 0.61 4.7 0.000 0.007 0.70 0.008 0.041 4.10

Table 7 (Example 1) f (x) = (−x2, x1): error and total CPU time, T = 2π

N2 UB-HJB Level set

CPU Order L1 error Haus. Haus./�x L1 error Haus. Haus./�x

502 0.04 0.192 0.116 1.45 0.236 0.249 3.11

1002 0.16 4.0 0.051 0.056 1.40 0.134 0.151 3.77

2002 0.70 4.4 0.049 0.042 2.10 0.038 0.094 4.70

4002 2.65 3.8 0.025 0.029 2.90 0.015 0.060 6.00

Example 1 (Advection of a square) In this first example we solve the following two-
dimensional advection equation

ϑt(t, x) + f (x) · ∇ϑ(t, x) = 0, t ∈ [0, T], x ∈ R
2, (11)

with a square box initial datum

ϕUB(x) :=
{

−1 if x ∈ [0.5,1.5] × [−0.5,0.5],
1 otherwise.

We consider two possible dynamics: either f (x1, x2) = (−2,−1)T with T = 1 (constant
advection), or f (x1, x2) = (−x2, x1)

T with T = 2π (rotation). Equation (11) is discretized
on the domain [−2,2]2 (with boundary conditions ϑ(t, x) = 1 when needed).

We show in Tables 6 and 7 the UB-HJB scheme results, with different discretization
numbers (the same number of nodes N is used in each direction). CPU times are given in
seconds. The error is computed in L1 norm between the numerical and exact solution (see
below), and the Hausdorff distance3 is also estimated, between the exact and approximate
front.

In the case of the level set method, we choose a regular (Lipschitz continuous) ϕLS which
admits the square border as 0-level set,

ϕLS(x1, x2) := min(r − 0.5,0.5), with r = max(|x1 − 1|, |x2|). (12)

3The Hausdorff distance between to sets A,B is defined as dH (A,B) := max(δ(A,B), δ(B,A)) where
δ(A,B) := maxa∈A d(a,B).

J Sci Comput (2010) 42: 251–273 267

In order to use a similar way for computing the L1 error for both UB-HJB and for the level
set approach, we define:

εUB := �x1�x2

∑
i,j

1{sign(V
NT ,UB
ij

)�=sign(ϕ(ξij))},

with sign(x) := −1 if x ≤ 0, sign(x) := 1 otherwise, V
n,UB
i,j is the numerical value of the

UB-HJB scheme, NT is the time step corresponding to the final time T and ξij denotes the
center of the cell (i, j); we define also

εLS := �x1�x2

∑
i,j

1{sign(V
NT ,LS
i,j

)�=sign(ϕLS(ξij))}

where V
n,LS
i,j denotes the numerical values computed by the level set method.

We remark that the L1 error estimate for UB-HJB may vanish, in the constant advection
case, which means here that the computed points with value −1 are all in the expected
correct cells. This comes from a known exact-advection property of the Ultra Bee scheme
as mentioned in Sect. 2.2.

We also note that the UB scheme, which is only a first order scheme at best, gives here re-
sults comparable to the second order RK2-ENO2 level set method. This is because the level
set method is second order only in the regions where the front is regular, and is not expected
to be better than first order otherwise (the theoretical bound is O(�x1/2) for monotone
schemes, following [13]).

Example 2 (Two-dimensional Rendez-Vous problem) In this example we consider an HJB
equation of type (1) with f (x, a) := (1, a)T and a ∈ {−1,1}, that is

ϑt(t, x) + ϑx1(t, x) + |ϑx2(t, x)| = 0, t ∈ [0, T], x = (x1, x2) ∈ R
2, (13a)

ϑ(0, x) = ϕr(x), (13b)

where the initial data is given by

ϕr(x) :=
{

−1 if ‖x‖∞ ≤ r,

1 otherwise
(13c)

(here we use the notation ‖(x1, x2)‖∞ := max(|x1|, |x2|)). We consider two types of target:

• r = 0.1: large target case.
• r = 0: thin target case. For numerical purpose, we set r = �x (so that there is only one

single node that contains a negative value).

Numerically, the equation is discretized on [−1,2]2. Results are given in Tables 8 and 9
and Fig. 6. We notice that, in the large target case, the level set method does not work for
N = 51 (i.e. N small), because the set of points such that V

n,LS
ij < 0 vanishes after a few

time steps. The problem is coming from the initial data discretization, which has only one
negative value (this is the same when r is only of the order of a few �x). This problem
would always occurs for thin target problems.

268 J Sci Comput (2010) 42: 251–273

Table 8 (Example 2) Rendez-Vous problem, T = 1. Large target (r = 0.1) The level set scheme may loose
the front (in this case no error is given)

N2 UB-HJB Level set

L1 error Haus. L1 error Haus.

512 0.178 0.052 – –

1012 0.105 0.022 0.101 0.094

2012 0.044 0.011 0.008 0.047

4012 0.022 0.006 0.006 0.027

Table 9 (Example 2) Rendez-Vous problem, T = 1. Thin target (r = �x). In this case, the 0-level set is lost
after a few time steps

N2 UB-HJB Level set

L1 error Haus. L1 error Haus.

512 0.166 0.043 – –

1012 0.080 0.031 – –

2012 0.040 0.016 – –

4012 0.020 0.008 – –

Fig. 6 (Example 2) Rendez vous problem with N = 101

Example 3 (Two-dimensional deformation of a half plane) We consider a front propagation
problem, where the initial front �0 is given by: �0 := {x = (x1, x2) ∈ R

2 | x2 = 0}. The
velocity of the front evolution is given by

f (t, x1, x2) = − sign

(
T

2
− t

)
max(1 − ‖x‖2,0)

(−2πx2

2πx1

)
.

The front propagation leads to the following advection equation{
ϑt (t, x) + f (t, x) · ∇ϑ(t, x) = 0, x ∈ R

2, t ∈ [0, T],
ϑ(0, x) = ϕ(x),

(14)

J Sci Comput (2010) 42: 251–273 269

Fig. 7 (Example 3) UB-HJB and level set methods at times t = 3 (after three turns) and t = 6 (return to
initial data), CFL= 0.9, with N = 100

Fig. 8 (Example 3) Same computation as in Fig. 7, with N = 50

where the function ϕ is continuous in the level set approach and discontinuous in our {−1,1}
approach

ϕLS(x1, x2) := min(max(x2,−1),1) in the level set approach,

ϕUB(x1, x2) :=
{

−1 x2 ≤ 0,

1 otherwise
in the {−1,1} approach,

(15)

It is not difficult to prove that the exact solution is given by: ϑ(t, x) = ϕ(R−2πa(x)t1x) where
Rt = (cos(t) − sin(t)

sin(t) cos(t)

)
, a(x) = max(1 − ‖x‖2,0), and t1 = min(t, T − t).

Results are given in Figs. 7 and 8 and Table 10, for T = 6, at two different times: t = 3
(three turns), and t = 6 (return to initial condition after three turns). Exact solution can be
obtained by using the method of characteristics. In Figs. 7 and 8 we show the results for the
UB-HJB and level set method, using N = 100 and N = 50 nodes per direction. Anew, the
UB-HJB scheme gives good results even on a coarse grid.

Example 4 (A three-dimensional rotation problem) Now we consider a three-dimensional
advection example:{

ϑt (t, x) + f (x) · ∇ϑ(t, x) = 0, t ∈ [0, T], x ∈ [−2,2]3,

ϑ(0, x) = ϕ(x)
(16)

270 J Sci Comput (2010) 42: 251–273

Fig. 9 (Example 4) advection problem (left), target problem (right). T = 2, N = 50

Table 10 (Example 3) deformation of a half plane at t = 3 (three turns) and t = 6 (return to initial data)

t = 3 t = 6

UB-HJB Level set

N2 L1 error Haus. L1 error Haus.

502 0.170 0.035 0.584 0.086

1002 0.092 0.019 0.136 0.028

2002 0.057 0.013 0.047 0.008

UB-HJB Level set

N2 L1 error Haus. L1 error Haus.

502 0.193 0.308 0.995 0.639

1002 0.073 0.107 0.282 0.195

2002 0.041 0.064 0.079 0.053

and the corresponding target problem (4), with f (x1, x2, x3) = (−2πx2,2πx1,−1)T where
the initial data is a sphere centered at (−1,0,1) with radius r = 0.1:

ϕ(x) :=
{

−1 if ‖x − (1,0,1)‖2 ≤ r,

1 otherwise,

where ‖x‖2 :=
√

x2
1 + x2

2 + x2
3 .

For both problems (advection and target), we use only the UB-HJB approximation
scheme, see Fig. 9. The computational domain is [−2,2]3. CPU times and errors are sum-
marized in Table 11 (with T = 2 for the advection problem, and T = 0.5 for the target
problem). The scaling of the CPU time approximately follows the theoretical scaling of 8 as
the mesh size doubles in each direction (a factor 4 comes from the number of cells localizing
the surface, and a factor of 2 comes from the time step �t , that is divided by 2 because of
the CFL condition). The Hausdorff distance decreases well in O(�x) too.

Here we would have been limited to N = 500 if we had used the FLS approach.

J Sci Comput (2010) 42: 251–273 271

Table 11 (Example 4) CPU times and errors for the 3d advection problem (with T = 2) and the correspond-
ing target problem (with T = 0.5), UB-HJB scheme

Advection Target problem

N3 CPU L1 error Hausdorff

503 0.22 4.1e−3 2.6e−1

1003 1.00 4.6 2.2e−3 8.0e−2

2003 7.19 7.2 6.2e−4 4.4e−2

4003 64.5 8.9 4.8e−4 2.4e−2

8003 546.0 8.4 2.6e−4 1.2e−2

N3 CPU L1 error Hausdorff

503 0.24 2.3e−1 1.8e−1

1003 1.15 4.8 1.3e−2 8.0e−2

2003 8.25 7.2 6.7e−2 4.0e−2

4003 76.0 9.2 3.5e−2 2.3e−2

8003 763.0 10.0 1.8e−2 1.3e−2

Table 12 (Example 5) four-dimensional non constant advection of a square box, T = 1, UB-HJB scheme

N4 CPU Order L1 error Haus. Haus./�x1

254 0.89 0.0016 0.140 1.7

504 9.29 10.4 0.0021 0.080 2.0

1004 129.1 13.9 0.0013 0.050 2.5

2004 2316.2 18.1 0.0007 0.025 2.5

Example 5 (4-dimensional non-constant advection) We consider a 4-dimensional advection
equation, with dynamics defined by coupling two rotations as follows:

f (x1, x2, x3, x4) = (−2πx2,2πx1,−2πx4,2πx3)
T.

The initial data is given by

ϕ(x) :=
{

−1 if x ∈ (0.5,0,0.5,0)T + [−0.1,0.1]4,

1 otherwise
(17)

(which corresponds to a small square box centered at (0.5,0,0.5,0)T). For T = 1 the exact
solution corresponds to the initial data. Computations are done in the unit box [−1,1]4.

Here we would have been limited to N = 110 (approximately) if we had used the FLS
approach.

We summarize the numerical results in Table 12. In this example, for N = 200 there is
an average of 230 000 cells in the narrow band (instead of N4 = 1 600 000 000), 384 time
iterations, with an average CPU time of 6.0 s per time iteration.

Example 6 We consider the HJB equation{
ϑt(t, x) + max(0,maxα=1,...,4(f (x,α) · ∇ϑ(t, x))) = 0, t ∈ [0, T], x ∈ R

4,

ϑ(0, x) = ϕ(x),
(18)

where the dynamics f (x,α) can have 4 different values: (1,0,0,0)T, (1,1,0,0)T, (1,0,1,0)T,
or (1,0,0,1)T. The initial data is given by

ϕ(x) :=
{

−1 if x = (0,0,0,0),

1 otherwise.

272 J Sci Comput (2010) 42: 251–273

Table 13 (Example 6) Results for T = 1, UB-HJB scheme

N4 CPU Order Haus. Haus./�x1

254 0.28 0.120 0.75

514 1.66 5.9 0.039 0.49

1014 11.97 7.2 0.029 0.73

2014 175.90 14.7 0.015 0.75

The exact solution is given by ϑ(t, x) = −1 on �t and ϑ(t, x) = 1 otherwise, where

�t := {x ∈ R
4 | x1, x2, x3, x4 ≥ 0, x2 + x3 + x4 ≤ x1 ≤ t}.

The computation is done in [−2,2]4. Results are given in Table 13.
In this example, the estimated CPU time for the computation for one control (one eval-

uation of the UB scheme for a given control a and for one time step), is about 10% of the
CPU time needed to manage the sparse structure for the same time step.

Acknowledgement The authors thank the anonymous referee for his detailed and insightful comments,
suggestions that greatly improved the presentation of the paper.

References

1. Abgrall, R.: Numerical discretization of first-order Hamilton-Jacobi equation on triangular meshes.
Commun. Pure Appl. Math. 49, 1339–1373 (1996)

2. Abgrall, R., Augoula, S.: High order numerical discretization for Hamilton-Jacobi equations on triangu-
lar meshes. J. Sci. Comput. 15, 197–229 (2000)

3. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys.
118, 269–277 (1995)

4. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman
Equations. Birkhäuser, Boston (1997)

5. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine,
C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Meth-
ods, 2nd edn. SIAM, Philadelphia (1994)

6. Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex
Hamiltonians. Commun. Partial Differ. Equ. 15, 1713–1742 (1990)

7. Bokanowski, O., Cristiani, E., Laurent-Varin, J., Zidani, H.: Hamilton-Jacobi-Bellman approach for the
climbing problem for heavy launchers. Preprint (2009)

8. Bokanowski, O., Forcadel, N., Zidani, H.: Convergence of a non-monotone scheme for Hamilton-Jacobi-
Bellman equations with discontinuous initial data. To appear in Math. Comput.

9. Bokanowski, O., Martin, S., Munos, R., Zidani, H.: An anti-diffusive scheme for viability problems.
Appl. Numer. Math. 56, 1135–1254 (2006)

10. Bokanowski, O., Megdich, N., Zidani, H.: An adaptative antidissipative method for optimal control prob-
lems. Arima 5, 256–271 (2006)

11. Bokanowski, O., Megdich, N., Zidani, H.: Convergence of a non-monotone scheme for Hamilton-
Jacobi-Bellman equations with discontinuous initial data. Numer. Math. (2009). doi:10.1007/
s00211-009-0271-1

12. Bokanowski, O., Zidani, H.: Anti-diffusive schemes for linear advection and application to Hamilton-
Jacobi-Bellman equations. J. Sci. Comput. 30, 1–33 (2007)

13. Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math.
Comput. 43, 1–19 (1984)

14. Desprès, B., Lagoutière, F.: Un schéma non linéaire anti-dissipatif pour l’équation d’advection linéaire.
A non-linear anti-diffusive scheme for the linear advection equation. C. R. Acad. Sci. Paris, Sér. I, Math.
328, 939–944 (1999)

http://dx.doi.org/10.1007/s00211-009-0271-1
http://dx.doi.org/10.1007/s00211-009-0271-1

J Sci Comput (2010) 42: 251–273 273

15. Desprès, B., Lagoutière, F.: Contact discontinuity capturing schemes for linear advection and compress-
ible gas dynamics. J. Sci. Comput. 16, 479–524 (2001)

16. Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Con-
trol Optim. 31, 257–272 (1993)

17. Hartmann, D., Meinke, M., Schroeder, W.: Differential equation based constrained reinitialization for
level set methods. J. Comput. Phys. 227, 6821–6845 (2008)

18. Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput.
21, 2126–2143 (2000)

19. Lagoutière, F.: A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-
reconstruction. C. R. Math. Acad. Sci. Paris 338, 549–554 (2004)

20. Lagoutière, F.: Modélisation mathématique et résolution numérique de problèmes de fluides compress-
ibles à plusieurs constituants. Ph.D. thesis, University of Paris VI, Paris, France (2000)

21. Lin, C.-Y., Chung, Y.-C.: Efficient data compression methods for multidimensional sparse array opera-
tions based on the EKMR scheme. IEEE Trans. Comput. 52, 1640–1646 (2003)

22. Megdich, N.: Méthodes anti-dissipatives pour les equations de Hamilton-Jacobi-Bellman. Ph.D. thesis,
University of Paris VI, Paris, France (2008)

23. Mitchell, I., Bayen, A., Tomlin, C.: A time-dependent Hamilton-Jacobi formulation of reachable sets for
continuous dynamic games. IEEE Trans. Automat. Contr. 50, 947–957 (2005)

24. Osher, S.: A level set formulation for the solution of the Hamilton-Jacobi equations. SIAM J. Math.
Anal. 24, 1145–1152 (1993)

25. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

26. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.
SIAM J. Numer. Anal. 28, 907–922 (1991)

27. Peng, D.P., Merriman, B., Osher, S., Zhao, H.K., Kang, M.J.: A PDE-based fast local level set method.
J. Comput. Phys. 155, 410–438 (1999)

28. Robins, G.: Robs algorithm. Appl. Math. Comput. 189, 314–325 (2007)
29. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press,
Cambridge (1999)

30. Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: High-order
Methods for Computational Physics. Lect. Notes Comput. Sci. Eng., vol. 9, pp. 439–582. Springer, Berlin
(1999)

31. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible
2-phase flow. J. Comput. Phys. 114, 146–159 (1994)

	An Efficient Data Structure and Accurate Scheme to Solve Front Propagation Problems
	Abstract
	Introduction
	Preliminaries
	Motivations and Setting of the Problem
	Advection Equation
	Eikonal Equation
	Target Problem: Capture Basin (or Backward Reachable Set)
	Rendez-Vous Problem

	Ultra Bee Scheme

	Storage Data Structure
	Some Known Storage Techniques
	The Sparse Semi-Dynamic Data Structure
	Comparisons
	Comparisons for Searching Neighbors
	Comparison for Updating the Data Structure

	Comments on CPU Time and Memory Allocation
	The Sparse Semi-Dynamic Storage for HJB Equations

	Numerical Examples
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

