
A Local Ordered Upwind Method for
Hamilton-Jacobi and Isaacs Equations ?

S. Cacace ∗ E. Cristiani ∗∗ M. Falcone ∗∗∗

∗Dipartimento di Matematica, SAPIENZA - Università di Roma,
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Rome, Italy (e-mail: emiliano.cristiani@gmail.com).

∗∗∗Dipartimento di Matematica, SAPIENZA - Università di Roma,
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Abstract: We present a generalization of the Fast Marching (FM) method for the numerical
solution of a class of Hamilton-Jacobi equations, including Hamilton-Jacobi-Bellman and
Hamilton-Jacobi-Isaacs equations. The method is able to compute an approximation of the
viscosity solution concentrating the computations only in a small evolving trial region, as the
original FM method. The main novelty is that the size of the trial region does not depend on
the dynamics. We compare the new method with the standard iterative algorithm and the FM
method, in terms of accuracy and order of computations on the grid nodes.
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1. INTRODUCTION

The solution of optimal control problems and differential
games via dynamic programming requires first the compu-
tation of the value function (see e.g. Bardi and Capuzzo
Dolcetta (1997)) which is characterized in terms of a first
order nonlinear partial differential equation of the form

H(x, u(x),∇u(x)) = 0 , x ∈ D , (1)

where H : D×R×Rd → R is called the Hamiltonian and
D is an open subset of Rd. Typically, Dirichlet bound-
ary conditions complement the equation. In particular,
for games, the Hamiltonian is nonconvex with a minmax
structure (for details see Bardi and Capuzzo Dolcetta
(1997) and Section 2 below). Despite the fact that the
theoretical framework and the approximation theory for
the classical iterative algorithms (e.g. finite differences,
semi-Lagrangian) are still valid in any dimension, the
computational problem which has to be solved is so huge
that no one has been able to compute a solution for a
dimension greater than 6. This is a real bottleneck for the
applications of this technique to real-life problems because
those problems are often high dimensional. For Pursuit-
Evasion games this difficulty becomes very serious even for
rather low dimensions since, in this case, the dimension of
the state variable appearing in the Isaacs equation doubles
the number of variables used for each player (we pass
from d to 2d variables in the continuous model). Some
techniques have been proposed to overcome this difficulty.
One can accelerate convergence via specially adapted
methods that exploit monotonicity as in Falcone (1997)
or can introduce efficient methods to implement the al-
gorithm in high-dimension as in Carlini et al. (2004),
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Bokanowski et al. (2010). Moreover, one can adopt a do-
main decomposition technique and split the problem into
sub-problems with a small number of nodes so that every
sub-problem can fit the memory allocation requirements
as in Camilli et al. (1994).
Another interesting idea is to localize the computation
to avoid useless computations. A class of Fast Marching
(FM) methods has been proposed for the eikonal equation,
starting from Tsitsiklis (1995) and Sethian (1996). The
main feature of these methods is that they are single-pass
and that their computational cost is of order O(N logN),
where N is the number of grid nodes.
More recently, the methods for the eikonal equation have
been improved in order to speed-up the computation as
in the Group Marching method (see Kim (2001)) and
to obtain more accurate results (see Cristiani and Fal-
cone (2007)). Moreover, FM-like methods have been pro-
posed for more general Hamilton-Jacobi equations and
various local solvers (see Carlini et al. (2006), Sethian and
Vladimirsky (2003), Prados and Soatto (2005), Cristiani
(2009)). Other efficient methods have been introduced, like
the Fast Sweeping methods, see e.g. Tsai et al. (2003),
Zhao (2005).

We present here a new method which looks as an im-
provement of the Buffered Fast Marching (BFM) method
proposed in Cristiani (2009). Both BFM and the new
method solve the same class of equations, but the new
method does not need to introduce the buffer zone as the
BFM does, thus keeping the computation strictly local.
In this paper we are interested in the solution of problems
with convex Hamiltonians where the standard FM method
fails, as e.g. the anisotropic eikonal equation (see Sethian
and Vladimirsky (2003)) and with minmax nonconvex
Hamiltonians which appear in the analysis of differential
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games. We will discuss the main ideas which are behind
this new algorithm also showing some numerical results on
classical problems.

2. HJB AND HJI EQUATIONS AND THEIR
DISCRETIZATION

Let us consider the Hamilton-Jacobi-Isaacs (HJI) equation
for the lower value of two-player zero-sum differential game
related to a target problem where each player lives in Rd,
i.e.{

v(x) + min
b∈B

max
a∈A

{
− f(x, a, b) · ∇v(x)

}
= 1, x ∈ R2d\Ω

v(x) = 0 , x ∈ ∂Ω
(2)

where f : R2d × A × B → R2d is the dynamics of the
game, A and B are two compact sets in Rm representing
the control set for the first player and for the second
player respectively and Ω is an open set representing the
target for the game (see Falcone (2006) for more details).
Dropping the second player, we obtain the Hamilton-
Jacobi-Bellman (HJB) equation associated to a minimum
time problem in dimension d,{

v(x) + max
a∈A

{
− f(x, a) · ∇v(x)

}
= 1, x ∈ Rd\Ω

v(x) = 0 , x ∈ ∂Ω.
(3)

As in Falcone (1997), Cristiani and Falcone (2009) we will
focus our attention on the fully-discrete semi-Lagrangian
(SL) scheme obtained via discrete dynamic programming,
which for (2) reads{

w(xi) = max
b∈B

min
a∈A

{
βw(zi(a, b))

}
+ 1− β , xi ∈ (Q\Ω) ∩G

w(xi) = 0 , xi ∈ Ω ∩G
(4)

where h > 0, β = e−h, w represents the approximation of
v, zi(a, b) := xi + hf(xi, a, b), Q is (tipically) a polyedral
set containing the target Ω and G is the set of the grid
nodes xi, i = 1, . . . , N . This leads to a numerical scheme
which can be written as a fixed point iteration in abstract
form

wn+1
i = Si[w

n], i = 1, . . . , N, n ∈ N , (5)

where wn
i represents the numerical solution at iteration

n and at the node xi. For an extensive presentation of
semi-Lagrangian schemes for linear and Hamilton-Jacobi
equations we refer the interested reader to the book
Falcone and Ferretti (2011).
It is well known that at every node xi ∈ G we need
to compute by interpolation the value w(zi(a, b)) for all
a ∈ A and b ∈ B, using the values of the grid nodes.
For a reconstruction based on linear interpolation in R2,
we use three nodes close to the point zi. A crucial point
in this scheme is the choice of the discretization step h.
An appropriate choice is essential to make the algorithm
suitable for the Fast Marching technique. First, we choose
a regular grid with uniform spatial space steps ∆x. Then,
for every node xi and every choice of a, b, we set h =
hi(a, b) = ∆x/|f(xi, a, b)|. In this way the point zi belongs
to one of the first four cells surrounding the node xi and
then the computation is kept ”local”. Moreover, we avoid
to use the value w(xi) in the linear interpolation, as this
allows for the convergence in a finite number of steps. Note
that, as h depends on a and b, the term β = e−h should
be now included in the minmax (or max) evaluation.

3. PREVIOUS FAST MARCHING METHODS

Here we briefly resume, for reader’s convenience, the main
features of some FM methods well known in literature.
This will be useful later for a comparison with our method.

3.1 The original Fast Marching method

The FM method was originally developed for the eikonal
equation {

c(x)|∇u(x)| = 1 , x ∈ Rd \ Ω
u(x) = 0 , x ∈ ∂Ω.

(6)

Note that this is the stationary version of the equation
describing, via the level set method, the propagation of
a front with speed c in the normal direction (see Falcone
(1994) for a detailed presentation of the relation between
the minimum time and the front propagation problem). By
the (monotone) change of variable v(x) = 1− exp(−u(x)),
the particular choice of the dynamics f(x, a) = c(x)a and
of the control set A = B(0, 1), equation (6) can be written
in the form (3). Note that 0 6 v < 1 because the minimum
time u is always positive by physics. We discretize the
eikonal equation by means of the SL scheme described
before.

The idea of the FM method is to concentrate the compu-
tational effort in a small subset of the grid at each time.
In more detail, at a generic step n of the algorithm the
grid is divided in three sets, An (accepted nodes), NBn

(narrow band nodes) and Fn (far nodes). The nodes in
An are already computed and their value is considered as
final, while the nodes in Fn are not yet computed. The
computation only takes place in NBn. At each step only
one node in NBn is moved to An and NBn is updated. The
FM method is able to compute the solution following the
level sets of the solution itself. Moreover, by accepting one
node at a time, the algorithm orders the grid nodes, and
this order turns to be the one that respects the causality
principle (the value of each node only depends on the
values of the previous nodes).
Let us describe the algorithm.

FM Algorithm

1. Locate the nodes belonging to the target Ω and label
them as A0, setting their values to w = 0. Label all
the neighbors of nodes in A0 as NB0 and compute
their values solving the discrete equation. Set to
w = 1 the value of all other nodes and label them
as F0.

2. Move the node Xmin := arg minX∈NBn
{w(X)} into

the accepted region, i.e. An+1 = An ∪ {Xmin}.
3. Remove Xmin from the narrow band and include not-

accepted neighbors of Xmin in the narrow band, i.e.
NBn+1=(NBn\{Xmin}) ∪ {not-accepted neighbors of
Xmin}. Solve the equation in NBn+1\NBn.

4. If NBn+1 is not empty go to Step 2 with n ← n + 1,
else stop.

Note that the SL scheme is compatible with the FM
technique, as proved in Cristiani and Falcone (2007). It
is also important to note that this method converges in
a finite number of iterations. It has been proved that for
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classical local solvers like finite difference or SL schemes
the FM method has a complexity of order O(N logN)
operations, where N is the total number of nodes.

3.2 Limitations of the FM method

The classical FM method accepts at each iteration the
node with the minimal value among all the nodes in
NB and this yields to compute the solution following its
gradient lines and not the characteristics. This choice
is correct in the case of the eikonal equation (6), since
gradient lines and characteristics coincide. That geometric
property does not hold any more for general Hamilton-
Jacobi equations (1), as in the anisotropic eikonal equation
extensively studied in Sethian and Vladimirsky (2003).
The FM method could fail in the sense that it could accept
a node in NB which has not reached convergence yet. Then
we face the new problem of finding a rule to determine
which node (if any) in NB should be accepted.

3.3 The Buffered Fast Marching method

Before introducing the new method, it is worth to recall
the main ideas of the Buffered FM (BFM) method, which
is a generalization of the FM method proposed in Cristiani
(2009). The BFM method divides the domain in four
sets instead of three. The additional set, called buffer,
is between the accepted region and the narrow band. It
collects all the nodes which exit the narrow band (with
the same accept-the-minimum rule of FM method). When
the buffer is large enough, a new acceptance condition is
used to move nodes to the accepted zone. To check this
condition it is required to compute the solution in the
buffer iteratively until convergence, substituting a test
value for the values of the narrow band (which act as a
boundary for the buffer region), see Cristiani (2009) for
details. Choosing in an appropriate way the test value, we
can find in the buffer those nodes that can not depend on
the outcome of future computations. Then they necessarily
depend on the accepted nodes.
It is important to note that the minimal size of the buffer
which allows to accept at least one node depends on the
dynamics f and it can be very large. In the worst case, the
BFM method becomes equivalent to the classical iterative
method which computes all the grid nodes at the same
time. This is the main drawback which we try to overcome
with the new method.

4. THE PROGRESSIVE FAST MARCHING METHOD

Let us assume for a while that we have at our disposal the
solution of the equation computed by the classical iterative
scheme (5) which computes on the full grid. We will refer
to this solution as the ”exact” solution. Then, we could
in principle use this solution to select the node in the
narrow band to be accepted, i.e. we simply select the node
which has the exact value. Running this dumb algorithm
we have checked that the narrow band does not always
contain an exact value, meaning that it is not possible to
build a truly single-pass scheme for general equations. It is
then necessary to solve iteratively in the narrow band the
numerical scheme in order to stabilize the solution and get
at least one acceptable node.

We are now ready to describe the Progressive FM (PFM)
method.

PFM Algorithm

1. Locate the nodes belonging to the target Ω and label
them as A0, setting their values to w = 0. Label all
the neighbors of the nodes in A0 as NB0 and compute
their values. Set the values of all other nodes to w = 1
and label them as F0.

2. Solve the numerical scheme iteratively in NBn until
all values are stabilized.

3. Find wmin = minX∈NBn
{w(X)} and set wout =

wmin.
4. For each node X ∈ NBn, replace the value of all its

not-accepted neighbors with wout, and re-solve in X
computing wnew(X). Compare w(X) with wnew(X).
If the node X has not changed its value, name it Xacc,
set An+1 = An ∪ {Xacc} and go to Step 5. If, after
cycled in NBn, all the nodes in NBn changed their
value, increase slightly wout and go to Step 4.

5. Update the narrow band, NBn+1=(NBn \ {Xacc}) ∪
{not-accepted neighbors of Xacc}.

6. If NBn+1 is not empty go to Step 2 with n ← n + 1,
else stop.

Let us clarify the main idea behind the algorithm. In order
to find the node to be accepted in the narrow band we
should know in advance the solution in the far zone, since
this would allow to find the node which does not depend
on the outcome of future computations. Since we do not
have this information, in order to safely make a choice
of acceptance we are forced to consider the two extreme
possibilities, namely w = wmin and w = 1: the first
represents the minimal value the solution can attain in the
current narrow band and far zone (because the solution
is increasing along characteristics), the second represents
an upper bound for the solution. The maximal case is
somehow included in the choice of the initial guess in the
far zone and then it must not be further considered. Let
us come to the minimal case.
After Step 2 of the PFM we can assume that at least one
node in the narrow band has the ”exact” value, so that
at least one node in the narrow band is not affected by
future computations. In Step 4, let us assume that all
the nodes in the narrow band changed their value. This
means that now all these nodes depend on the test value
wout, but this contradict the result of Step 2. Then, we
are allowed to increase a little bit wout and repeat the
computation. When the threshold value wout is found, we
have found the actual lowest value which can come out
from future computations and then we can accept the
first node whose value is not affected by it. In this way
we introduce a completely new rule of acceptance for the
nodes in the narrow band, which turns out to be the correct
one. Moreover, in the case where wout coincides with wmin,
we recover the classical FM method. Then, we can also
interpret the gap wout−wmin as an index of anisotropy of
the problem.
In order to speed up the algorithm, we can compute and
keep in memory the threshold wout(X) for all X ∈ NB, and
then accept the node X = arg minX∈NB wout(X). This
allows to re-compute at each iteration only few thresholds,
since wout(X) will change only if X is a neighbor of X.
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PFM method shares with BFM method some important
features. The most important one is the use of a test value
(wout in PFM method) to be assigned outside the region
in which the next accepted node must be found. It is
interesting to note that the enlargement of the buffer zone
in the BFM method is now replaced by the increments of
wout (Step 4 of PFM).
Concerning memory usage, apart from the storage of a
full matrix for the solution, both methods need extra data
structures to work, but PFM method has some advantages.
Indeed, BFM allocates two lists, one containing the nodes
belonging to the narrow band and one containing the nodes
belonging to the buffer. Since the narrow band is an object
of co-dimension 1, the size of the first list, e.g. in dimension
2, is about

√
N , where N is the total number of grid

nodes. On the other hand, the size of the buffer list is a-
priori unknown, since it strongly depends on the dynamics
driving the system and in the worst case it may contain
the nodes of the whole grid. On the contrary, we recall that
PFM method is designed to be a strictly local algorithm
and then it only requires a narrow band list to perform all
the computations. This is an important improvement in
view of the application of the method to high dimensional
problems.

5. NUMERICAL EXPERIMENTS

All numerical experiments were performed with a Matlab
(version 7) implementation on a HP Compaq 8510w with
an Intel Core 2 Duo T7500 2.20 GHz processor and 2 GB
RAM. The numerical domain is Q = [−2, 2]2, the grid
G has 51 × 51 nodes (corresponding to spatial discretiza-
tion steps ∆x = ∆y = 0.08) and the unit ball B(0, 1),
representing the control set, is discretized by means of 16
directions uniformly distributed on the boundary. If no
otherwise specified, we choose Ω = B(0, ε) with ε = 0.001
as target set. Moreover, in all the figures below, we will
plot the physical minimum time function u = − log(1− v)
instead of its Kružkov transform v.

Test 1 (Anisotropic eikonal equation)

Let us consider equation (3) for dimension d = 2 and set

f(x, y, a) = c(x, y, a) a, a = (a1, a2) ∈ B(0, 1)

with

c(x, y, a) =
1√

1 + (λa1 + µa2)2
λ = µ = 5.

This is a well known case where the classical FM method
fails (see Sethian and Vladimirsky (2003)), so it is a good
benchmark for our PFM algorithm.
In Fig.1 we compare the level sets of the solutions obtained
by the FM method and by the PFM method respectively.
Focusing on the II and IV quadrant, we can see that
the ellipses computed by the FM method are quite a bit
distorted with respect to those computed by PFM method.
As discussed in Section 3.2, this depends on the fact that
in these regions gradient lines and characteristics fall in
different cells of the grid, so that FM method propagates
a wrong information producing an error as large as we
move away from the origin.
In Fig.2 we show how the grid nodes are accepted by
the two methods at some intermediate stage. It is quite

evident that FM method computes the solution following
its level sets (i.e. the gradient lines), while PFM method
(see again II and IV quadrant in Fig.2(b), focusing on the
corner points of the hexagon) employs information coming
from the x = 0 and y = 0 axes, which belong to the
right numerical domain of dependence, thus computing
the correct solution. Indeed, the error in the L∞ norm with
respect to the solution computed by the standard iterative
scheme (5) is about 0.7 for the FM solution whereas the
error is of order 10−15 for the PFM solution.

(a) (b)

Fig. 1. Level sets of the solution: (a) FM, (b) PFM

(a) (b)

Fig. 2. Order of acceptance: (a) FM, (b) PFM

Test 2 (Zermelo navigation problem)

By choosing in equation (3) the dimension d = 2 and

f(x, y, a) = 2.1a+ (2, 0) , a ∈ B(0, 1)

we get the classical Zermelo navigation problem when the
speed of the current is 2 and the boat can move in any
direction with speed 2.1. Accordingly to that dynamics
it is possible to reach the target from every point of the
space. Again, the classical FM method fails due to the
strong anisotropy of the problem and this gives us another
interesting example to test our algorithm PFM.
In Fig.3 we compare the level sets of the solution obtained
by the FM method and by the PFM method respectively.
Here it is much more evident than in the previous test that
there is a difference between the level sets in the half plane
{x 6 0}, which is a region with a strong anisotropy where
gradient lines and characteristics do not fall in the same
cell of the grid.
In Fig.4 we report the nodes accepted by the classical FM
method and the PFM method at some intermediate stage.
The error in the L∞ norm with respect to the solution
computed by the standard iterative scheme (5) is about
0.4 for the FM solution and 10−15 for the PFM solution.
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(a) (b)

Fig. 3. Level sets of the solution: (a) FM, (b) PFM

(a) (b)

Fig. 4. Order of acceptance: (a) FM, (b) PFM

Test 3 (Tag-Chase game in R with state constraints)

Two boys P and E are running one after the other on
the segment [−2, 2]. P wants to catch E in minimal time
whereas E wants to avoid the capture. Both of them are
running with constant speed (respectively denoted by vP
and vE) and they can change their direction instanta-
neously. The game corresponds to equation (2) with the
choices d = 1 and

f(x, y, a, b) = (vPa, vEb) , a, b ∈ A = B = {−1, 0, 1} ,
Ω = {(x, y) : x = y} .

In the computations we have chosen vP = 2, vE = 1. Since
the solution is symmetric with respect to the diagonal
{x = y} it suffices to compute the solution only in the
upper triangle. We refer to Cristiani and Falcone (2009)
for details on the implementation of state constraints.
In Fig.5 we show the value function computed by PFM
and its level sets.
In Fig.6 we report the nodes accepted by the classical FM
method and the PFM method at some intermediate stage.

Fig. 5. The value function and its level sets

(a) (b)

Fig. 6. Order of acceptance: (a) FM, (b) PFM

The error in the L∞ norm with respect to the solution
computed by the standard iterative scheme (5) is about
10−11 for the PFM solution. On the other hand, the
classical FM method fails for this problem.

Test 4 (Tag-Chase game in R2 with control constraints)

Here we extend the previous test to dimension 2 (without
state constraints). The players P and E are now running
in the plane R2. In reduced coordinates (see Falcone (2006)
for details) the game corresponds to equation (2) with

f(x, y, a, b) = vPa− vEb , A = B = B(0, 1) .

The pursuer P has a constraint on his displacement
directions. He can choose his control a = (cos θ, sin θ) only
for θ ∈ [π/4, 7π/4]. We have chosen vP = 2, vE = 1 in
order to guarantee the capture of E.
In Fig.7 we show the level sets of the value function
computed by PFM and a couple of optimal trajectories
in the real plane.
In Fig.8 we report the nodes accepted by the classical FM
method and the PFM method at some intermediate stage.

Fig. 7. Level sets and optimal trajectories

(a) (b)

Fig. 8. Order of acceptance: (a) FM, (b) PFM
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It is interesting to note that while the Evader is running to
the right on a straight line, the Pursuer follows a zig-zag
path to intercept him. Since the Pursuer does not have the
control direction corresponding to the interception line, he
is forced to switch between two controls to approximate
the optimal line of interception.
The error in the L∞ norm with respect to the solution
computed by the standard iterative scheme (5) is about
10−10 for the PFM solution. Again, the classical FM
method can not be applied to this problem.

6. CONCLUSIONS AND FUTURE WORK

We have proposed a new algorithm for the approximation
of viscosity solutions of first order nonlinear partial differ-
ential equations related to control and games problems. In
particular, as we have shown in our tests, the algorithm is
able to compute the solution of a large variety of challeng-
ing nonlinear convex and nonconvex problems. Moreover,
the method gives accurate results on equations which can
not be solved by the original FM method.

To our knowledge, this is the first ordered upwind method
for general Hamilton-Jacobi equations which is able to find
the node to be accepted without the need of enlarging
the narrow band as in Sethian and Vladimirsky (2003),
or enlarging the region between the narrow band and the
accepted zone as in Cristiani (2009), or using an a priori
information as in Prados and Soatto (2005), where a sub-
solution of the equation is needed. Indeed, the correct
value is found without computing other nodes than the
first neighbors of the accepted zone.
The PFM method can be easily extended in any dimension
and the ”locality” of the method is also an advantage
for memory usage, since only a single list containing
narrow band nodes should be allocated to perform all the
computations. In addition, more than one node can be
accepted at a time.

These results motivate further investigations on the com-
plexity of the method and its accuracy from a theoretical
point of view. Several issues need to be improved in the
implementation in order to reduce the amount of computa-
tions needed to get the solution. In our forthcoming papers
we will proceed in these directions.
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