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ABSTRACT

In recent years, Shape from Shading (SfS) research has been
dominated by the rise of perspective models and advanced
numerical schemes, which allowed for impressive results
compared to previous methods in the field. Despite of these
groundbreaking developments, researchers concentrated on
Lambertian reflectance models. Recently, some researchers
started to include more advanced reflectance models into the
Lambertian state-of-the art model of Prados and Faugeras.
Such methods include simple models for specular reflectance,
which is of particular importance when reconstructing shiny
objects. Other models replace Lambertian reflectance by
more advanced types of diffuse reflectance like the Oren-
Nayar model, which is of particular importance for the recon-
struction of human skin. We review these reflectance models
and discuss their compatibility with the state-of-the-art nu-
merical solvers for SfS, both iterative and non-iterative.

Index Terms— Shape from Shading, Numerical Methods

1. INTRODUCTION

Shape from Shading (SfS) is the problem of determining the
three-dimensional shape of objects from the brightness infor-
mation contained in a single two-dimensional image. In re-
cent years, research on SfS has drastically changed. Prados et
al. [1] proposed a novel partial differential equation (PDE) to
be associated to the problem, as well as a numerical method
to solve this PDE. In this model, very different assumptions to
classic SfS models have been used, such as perspective pro-
jection and a point light source in the optical centre of the
projection. In addition, they model the inverse-square law for
the attenuation of the light source. This allowed for a nearly
well-posed model [2] and results of impressive quality which
have not been achievable with classic methods.

However, as in most classic works on SfS, the model is
based on Lambertian reflectance. The use of two more ad-
vanced reflectance models has been proposed, which allow

to apply SfS to a larger class of images. One is the Phong
reflectance model [3], which extends the Lambertian model
by specular highlights. A second model is the Oren-Nayar
model [4], which replaces Lambertian reflectance by a more
realistic model, particularly well-suited for rough surfaces.

Our Contribution. We briefly review these two non-
Lambertian reflectance models for SfS. We discuss different
options for numerical schemes to solve the underlying PDEs
and their computational performance. We propose an effi-
cient iterative scheme which is applicable to both models and
present a way to derive a suitable stability limit to the (ficti-
tious) time step which has to be introduced, and can even be
chosen adaptively over the image. By means of a numerical
test we will show that the discretisation is compatible with
so-called Fast Marching algorithms, which allow for very fast
solution of the equations. Finally, we evaluate the perfor-
mance of the proposed scheme in comparison with a classic
one.

2. REFLECTANCE MODELS

Perspective SfS methods are based upon solving so-called
Hamilton-Jacobi (HJ) equations, which are hyperbolic PDEs
of the form

H(x, u(x),∇u(x)) = 0 , x ∈ Ω , (1)

where the set Ω ⊂ R2 represents the image’s domain. The
function H is called Hamiltonian. In the following, we re-
view the two existing non-Lambertian models and their cor-
responding Hamiltonians. The depth of the surface can be
easily recovered by solutions of these equations.

2.1. Phong model

The first model we discuss is the Phong model as used for SfS
in [3]. Here, the Lambertian model is extended by terms for
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ambient and specular reflection. The corresponding underly-
ing brightness equation reads as

I = kaIa +
∑

light sources

1

r2

(
kdId cosφ+ ksIs(cos θ)α

)
(2)

where Ia, Id, and Is are the intensities of the ambient, diffuse,
and specular components of light, respectively. φ denotes the
angle between light source direction and surface normal. The
constants ka, kd, and ks with ka + kd + ks ≤ 1 denote the ra-
tio of ambient, diffuse, and specular reflection. The amount of
specular light reflected towards the viewer is proportional to
(cos θ)α, where θ is the angle between the ideal mirror reflec-
tion direction of the incoming light and the viewer direction,
and α is a constant modelling the roughness of the material.
Finally, r = r(x) is the distance between the light source and
surface points.

In the specific setting of a SfS model with a single light
source located at the optical centre, we have 2φ = θ. With
this simplifying assumption, we can derive [3] the equation

f2W

Q
(I − kaIa)− kdIde−2v − WksIse

−2v

Q
Rα = 0 (3)

with W :=
√
f2‖∇v(x)‖2 + (∇v(x) · x)2 +Q2 (4)

Q := f/
(√
‖x‖2 + f2

)
(5)

R := (2Q2/W 2)− 1 (6)

where v = lnu is the logarithm of the sought depth, f is the
focal length and ‖ · ‖ denotes the Euclidean norm.

2.2. Oren-Nayar model

In the Oren-Nayar reflectance model as used for SfS by
Ahmed and Farag [4], a rough surface is stochastically mod-
elled by many small facets, each of which is modelled by
Lambertian reflectance. In essence, its underlying brightness
equation reads as

I =
1

r2

ρ

π
Li cosφi(A+B sinα tanβmax (0, cos(φr − φi)))

where Li is the intensity of the light source, ρ the albedo of
the surface, φi the angle between surface normal and light
source direction, φr the angle between surface normal and
observer direction, α = max (φi, φr), β = min (φi, φr),
A = 1−0.5 σ2

σ2+0.33 , B = 0.45 σ2

σ2+0.09 , and σ being the stan-
dard deviation of the Gaussian distribution used in modelling
the distribution of the facets. Parameter σ can be understood
as a measure of the roughness of the surface. In the specific
setting of the point light source located in the optical centre,
we obtain φ := φi = φr = α = β. This greatly simplifies the
brightness equation and leads to the equation

0 = f2I
M + 1

A
√
M + 1 +BM

− e−2v (7)

with

M =
[
f2‖∇v (x) ‖2 + (∇v (x) · x)

2
](‖x‖2 + f2

f2

)
. (8)

3. NUMERICAL METHODS

Most methods proposed for SfS are iterative. In principle, all
these methods follow the same approach. For a given Hamil-
tonian, the iteration

v(k+1) = v(k) − τH̃(x, v(k)(x), ∇̃v(k)(x)) (9)

is performed, starting from some suitable initial guess v(0). H̃
is called the discrete Hamiltonian and ∇̃ is the discrete gradi-
ent. The parameter τ > 0 is a (fictitious) time step introduced
to write the equation in a fixed point form.

A general-purpose method of discretising such HJ equa-
tion is the Lax-Friedrichs (LF) method [5]. This method is
employed by Ahmed and Farag [4] for the Oren-Nayar model.
The discrete Hamiltonian of the LF method approximating (1)
reads as

H̃ := H(x, v(x), ∇̃v(x))

+
α1

2

(
vi+1,j − 2vi,j + vi−1,j

h

)
(10)

+
α2

2

(
vi,j+1 − 2vi,j + vi,j−1

h

)
where h is the space discretisation step (in both x1 and x2

directions), and

α1 ≥ max
Ω
|H ∂v

∂x1

(x, v,∇v)| , α2 ≥ max
Ω
|H ∂v

∂x2

(x, v,∇v)|.

In practice, we need to compute α1 and α2 at the beginning
of each iteration. The LF method is generally rather slow and
tends to smear out solutions. In addition, it is rather difficult
to find a good estimate for the parameter τ .

A much more efficient discretisation of spatial derivatives
is the so-called Upwind scheme used in [6]. This is not suit-
able for all Hamiltonians, in general we can only be sure on
convex Hamiltonians w.r.t. ∇v. For SfS, the Lambertian
Hamiltonian is convex [1], however for the non-Lambertian
case this does not hold. Nevertheless, it is also possible to
obtain a stable scheme when applying an Upwind scheme to
certain non-convex Hamiltonians.

In an Upwind scheme, spatial derivatives are approxi-
mated by one-sided difference approximations in the ”right”
direction. For the x1-derivative of v, we simply determine

min

{
vi+1,j − vi,j

h
,
vi−1,j − vi,j

h
, 0

}
. (11)

If the first or third term of this set is the smallest, we simply
take this as the derivative. If the second term is the smallest,
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we take this as the derivative after reversing its sign. In x2-
direction, we proceed analogously as in the x1-direction.

Using an Upwind scheme has several advantages over the
LF method. There is no need to precompute maxima over
derivatives of the Hamiltonian at the beginning of each it-
eration. This has the consequence that it is possible to use
updated values of v during the iteration once available, sim-
ilar to the Gauss-Seidel method for solving linear systems.
This significantly improves the rate of convergence of the
method, resulting in a much faster method. Furthermore, Up-
wind schemes are significantly easier to implement than a LF
scheme.

Another advantage of the Upwind method is that it is sig-
nificantly easier to determine an upper bound for the time step
size than for the LF method. In essence, we need to find an
upper bound of the discretised version of the Hamiltonian H̃
such that, for some τ0 > 0, we have

H̃ ≤ δv

τ0
(12)

where δv is the absolute value of the discretised spatial gradi-
ent, see [7]. Then, the scheme will be stable for all τ < τ0.
By a derivation similar to the one done in [7], we can obtain
an upper bound for both the Phong as well as the Oren-Nayar
Hamiltonian. For the Phong model, we obtain the bound

τ ≤ Q

(I − kaIa)f2
√

2f2 + α‖x‖2
(13)

and for the Oren-Nayar model we obtain the bound

τ ≤ Af√
‖x‖2 + f2(

√
2f + 2‖x‖)

. (14)

Note that it is possible to choose these time steps adaptively
for every pixel instead of choosing one common value for the
entire image. This results in a further speed-up of the method.

Furthermore, using an Upwind scheme, it is possible to
use a Fast Marching algorithm, which has been described
for the Phong model in [8]. It is a non-iterative algorithm
in which the nodes of the grid are visited in a special order,
which is found by the algorithm itself. The same procedure is
also possible for the Oren-Nayar model.

4. EXPERIMENTS

In this section, we evaluate the performance of the different
numerical methods on a standard example, the Mozart face
surface. We used the original version of the image which
can be downloaded from the webpage of the authors of [9].
This version contains several peaks and discontinuities, which
make the reconstruction particularly difficult. The size of the
image is 256× 256 pixels and the focal length f is 500 times
the pixel size. The first row of Figure 1 shows two different
input images, one being a rendered version of the surface

Fig. 1. Shape from Shading on the Mozart face. Top: Input
images (Phong, Oren-Nayar). Bottom: Ground truth.

using the Phong model with 20% specular reflectance and
α = 5, the second using the Oren-Nayar model with σ = 0.5.
The bottom row of Figure 1 shows the ground truth surface
for this experiment.

The reconstructed surfaces are displayed in Figure 2. The
plots show the reconstructions obtained using an Upwind
scheme. Visually, both look convincing, the Hamiltonian
modelling the Phong model tends to smear edges while the
Oren-Nayar model generally allows for sharper edges, in-
cluding the peaks in the surface. We did not include plots of
the result achieved using the LF discretisation, as the results
look very similar, including their behaviour at discontinuities.
Initialisation in all cases was an upper bound for the depth
in this experiment. Boundary conditions used are Neumann
boundary conditions. For Upwind discretisations, Neumann
boundary conditions and state constraints are the same.

The main difference between the LF discretisation and the
Upwind scheme can be observed in the run times, see Table 1.
The table contains run times for the LF discretisation using a
fixed τ , manually optimised such that the method just remains
stable. The iterative result using an Upwind discretisation has
been achieved with a Gauss-Seidel-like scheme and an adap-
tive τ . Both iterations have been stopped at an equivalent rate
of convergence, i.e. with a similar stopping criterion. The run
times representatively reflect the time necessary to obtain a
reasonable result with our implementation.

As we can observe, the run times of the scheme with an
Upwind discretisation are significantly better than those for
the LF discretisation. This fact, together with this scheme
being much easier to implement and a clear stability bound
for the time step size makes the Upwind discretisation clearly
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Fig. 2. Reconstructions. Top: Phong, Bottom: Oren-Nayar.

superior to the LF discretisation.
Finally, we also included run times for both experiments

using a Fast Marching method implemented in the same way
as proposed in [8]. Obviously, the run-times are even bet-
ter. However, this method is more intricate to implement than
the iterative Upwind solver, and it strongly depends on the
right initialisation, which can be found for both models, but
requires some non-trivial insight into the model. Since the
Fast Marching method depends on the Upwind discretisation
as well, it clearly shows the superiority of an Upwind discreti-
sation compared to LF schemes.

5. CONCLUSION

We reviewed two advanced shape-from-shading models based
on non-Lambertian reflectance. One was the Phong model,
which extends a Lambertian reflectance model by specular
highlights, the other the Oren-Nayar reflectance model, which
replaces Lambertian reflectance by a more realistic model for
rough surfaces.

We proposed to discretise the Hamilton-Jacobi equations
with an Upwind discretisation, since they allow better per-
formance to the commonly used Lax-Friedrichs schemes. In

Table 1. Run-times for the experiments (in seconds).
Model / Method LF Upwind Fast Marching

Phong 79.8 13.5 0.87
Oren-Nayar 46.3 4.89 0.73

addition, they are much easier to implement. We derived up-
per bounds for the fictitious time step of both models, giving
the reader a guide to implement these methods.

Experimentally, we verified the better performance of
Upwind-based schemes and also tested an Upwind-based
Fast Marching method on both reflectance models, which
allowed for even better performance and qualitatively compa-
rable results. Therefore, we advocate the use of Upwind-type
schemes, even if it takes some effort on the theoretical side.
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