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Abstract

In this paper we propose an algorithm for vehicular traffic forecast. The mathematical

model is developed to exploit a set of experimental data, which comes from a large

number of mobile sensors located on cars. Data refer to traffic flow in an urban motorway

in Rome, Italy. The model is based on a fluid dynamic approach and is able to make

predictions with good accuracy in free, congested, and unsteady conditions. Different

kinds of initializations and algorithms are discussed, then forecast is compared with the

exact solution. Traffic data were provided by Octo Telematics c© SpA.
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1. Introduction.

Mathematical models for vehicular traffic have been investigated since
long time. The traffic simulation problem is challenging due to the rapid
changes as well as random events which can happen. It was attacked by
means of macro-, meso-, and microscopic models, and a huge bulk of litera-
ture is now available, see for example the review [11] and the books [12,15].
In this paper we restrict ourself to macroscopic models, i.e. models where
the flow of cars along a road is assimilated to the flow of fluid particles, for
which suitable balance or conservation laws can be written. For this reason,
macroscopic models are often called in the present context fluid dynamic
or hydrodynamic models. This kind of models are particularly suitable to
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deal with large data sets, as it is our case. The interested reader can find
an extensive review of the subject in the recent review [20].

Mathematical models have been also extended to graphs. In this case
each road is connected to other roads, creating a network. Fluid dynamic
models may be formed by a system of scalar conservation laws, and equa-
tions are coupled by means of the boundary conditions. Many mathematical
results are available to deal with such a systems, from both theoretical and
numerical point of view. The interested reader can find extensions to net-
works of the classical macroscopic approaches in several papers like, among
others, [5–7,9,10,14], and in the book [8].

Besides mathematical models, an accurate forecast necessarily relies on
large data sets. Indeed, without accurate statistics it is impossible to tune
properly the parameters of the model. Focusing on macroscopic models
based on first-order scalar conservation laws, the main issue is to compute
the fundamental diagram, i.e. the relationship between the flux of vehicles
(number of cars per unit time) and their density. We also stress that no
mathematical model is able to foresee random events, like car accidents. To
overcome this issue, forecast algorithms must exchange data with sensors
able to measure traffic condition in real time.

Many experiments using real data have been reported in the literature.
For example, papers [18,19] report the results of an experiment performed
in a 6-km segment of an urban motorway in Paris, using a macroscopic
approach. Authors use data coming from static sensors placed in 13 loca-
tions along the road. Interesting experiments are also reported in [1] and
references therein, using static sensors. In [2] the authors perform some ex-
periments in an urban road in Rome. They use data coming from 7 static
sensors for each direction, which register flux and velocity of the cars every
minute. The road is divided in several segments, and the algorithm is exe-
cuted in each segment separately (sharing information at the boundaries).
In this way it is possible to choose different model parameters in each seg-
ment, thus optimizing the algorithm. Finally, let us mention the very recent
work [22], in which mobile (Lagrangian) sensors are used. Data come from
GPS units installed on mobile phones of the drivers. The road length is
about 11 km.

As opposite to previously cited papers, the aim of the present paper is
not only to reproduce complex traffic behaviour, but also to make future
forecast of traffic conditions: more precisely, in [2,18,22] the proposed al-
gorithms are constantly fed by experimental data while running, so that
simulations are corrected at regular time intervals (using a Kalman filter,
for example). In this paper we use instead experimental data just to start
the algorithm with a fully reliable initial condition, and then we make fore-
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casts with no more supporting data. This is made possible thanks to an
unprecedented number of data, provided by hundreds of thousands of mo-
bile (Lagrangian) sensors placed directly on cars.

Our results open new possibilities in the field of infomobility. The final
goal we have in mind is to provide drivers with real-time traffic forecast
directly on their on-board satellite navigator. Moreover, once a reliable
forecast about traffic conditions is given, accurate travel time forecast and
minimum-time paths can be provided too.

The paper is organized as follows. In the next section we present and
discuss the data at our disposal. In Section 3 we introduce the mathemat-
ical model and the numerical approximation of the associated equation,
discussing in particular the way to compute suitable initial conditions. In
Section 4 we present the numerical results and finally some conclusions end
the paper.

2. Experimental data.

First, we discuss the experimental data provided by Octo Telematics c©a

SpA. Octo Telematics c© mounts on cars a special set of sensors, named
clear box. Each clear box registers data at some time instants, then sends
the information to the base for processing. Final data include position (by
a GPS unit) and velocity of the car, as well as registration (measurement)
time and processing time. When data used in this paper were collected,
about 750,000 cars were equipped with a clear box in Italy, corresponding
to more than 2% of the total number of cars.

We ran the algorithm on a batch of data relative to a part of the Grande
Raccordo Anulare (GRA) in Rome, Italy. GRA is a circular urban motorway
with three lanes for each direction. The whole GRA is in general highly
congested, and long queues are usual. The part under consideration spans
from exit 10 to exit 19 (18 km), see Fig. 1. The speed limit is 130 km/h.
Data were collected on June 19, 2009 (Friday), from 6 a.m. to 11 a.m.
We choose as initial time t = 0 the time of the registration of the first
data. In Fig. 2 we report in the space-time all the positions registered by
the sensors for each direction. The size and color of the circles denote the
velocity (the smaller and darker the circle the lower the velocity). The data
set is remarkably large, much more than real-time data usually available
by static sensors along the roads. Here we have 13,728 measurements in
the North→South direction and 18,775 measurements in the South→North
direction. In both sides several formations of queues are clearly visible, as
well as their disappearance.

awww.octotelematics.it
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Fig. 1. Considered part of the Grande Raccordo Anulare of Rome, Italy (by Google
maps).

In Fig. 3 we track a single car which covers almost the whole road
segment. The average delay between the measurement and the processing
time is about 10 minutes, with a minimum of 1 minute and a maximum of 1
hour. In Fig. 4 we show the measurements taken between t = 160 min and
t = 210 min. Measurements in black are not yet available at time t = 210
min, due to the above-mentioned delay.

It is worth noting that data are affected by noise. Besides the known
GPS inaccuracy, we find some still cars as well as cars in some service roads
on the side. Nevertheless, we do not make any particular data filtering, in
order to show the full potentiality of the model. Finally, note that velocities
higher than 130 km/h were truncated to 130 km/h for technical reasons.

We did not include in the simulations the outgoing and incoming roads
which heavily influence the traffic in the considered segment. Nevertheless,
our results show that the model is quite robust and can provide accurate
forecast even neglecting important information. In addition, as recalled in
the Introduction, there are no theoretical nor practical difficulties in includ-
ing a more complex topology in the model, then we expect an even better
result including more roads or simply modelling the whole GRA, avoiding
in this way the need of boundary conditions.
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Fig. 2. Data plot, North→South direction (top) and South→North direction (bottom).
The smaller and darker the circle the lower the velocity.

3. The mathematical model and its numerical approximation.

The large data set provided by Octo Telematics c© seems to be particu-
larly suitable for a fluid dynamic model. Indeed, considering that we deal
with a three-lane motorway, in a microscopic (i.e. follow-the-leader-like)
approach we should consider the three lanes individually (but not indepen-
dently), including overtaking manoeuvres, and this would make the model
more difficult to implement. In addition, we note that if we want to avoid
such a fine treatment, an average on the three lanes should be performed,
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Fig. 3. Trace of a single car on the whole road segment.
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Fig. 4. Data measured between t = 160 min and t = 210 min (South→North direction).
In black, data not yet available at time t = 210 min.

making the model closer to a macroscopic one.
We use a model based on the classical Lighthill-Whitham-Richards

(LWR) approach [17,21]. The unknown

ρ(x, t) : [xentry, xexit]× [0,+∞) → [0, ρmax]

represents the density of vehicles at point x and time t, xentry, xexit being
the beginning and the end of the road respectively, and ρmax the maximal
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density. The density function ρ is the solution of the following first-order
hyperbolic problem

(1)





ρt + f(ρ)x = 0, x ∈ [xentry, xexit], t > t0,
ρ(x, t0) = ρ0(x), x ∈ [xentry, xexit],
ρ(xentry, t) = ρentry(t), t > t0,
∂
∂x
ρ(xexit, t) = 0, t > t0,

where f(ρ) is the (given) flux, ρ0 is the initial condition and ρentry is the in-
flow boundary condition. Each side of the motorway is modelled separately,
since it is assumed that what happens in a direction does not influence cars
flowing in the other direction (this is general not true because it is well
known that an accident on one side can slow down cars on the other side).
As opposite to [2], we consider the whole road as a unique segment, rather
than dividing it in several parts. As a consequence, a unique flux f(ρ) must
be given. Again, this is done for simplicity and shows the robustness of the
model.

3.1. Fundamental diagram

In such a model one of the crucial points is the choice of the flux. The
flux f(ρ) is given by

(2) f(ρ) = ρv(ρ) ,

where v(ρ) is the velocity of the cars as a function of the density. A classical
choice for the function v(ρ) is the Greenshields velocity function

v(ρ) =
vmax

ρmax
(ρmax − ρ)

where vmax is the maximal velocity of the cars.
Although the Greenshields function is a reasonable choice, considering

the large data set at our disposal we prefer to find v(ρ) by a best-fit inter-
polation. To this end, we first need to find a suitable value for the maximal
density ρmax in terms of car/km. Unfortunately, we cannot rely on the
maximum number of cars which physically stay in 1 km because all cars
do not have a transmitting box on board. Then, we introduce a grid in the
space-time box of Fig. 2, and we select an apparently fully-congested cell
C̄ (velocities between 0 and 15 km/h). The number of cars in C̄ is then
used to define ρmax, which turns out to be 72 car/km. This value is just a
representative constant of the maximal density, but it is not the true value
of it. The other model parameters are chosen in accordance to the value of
ρmax. Note that any difference between 72 and the true value only leads to

60



DOI: 10.1685/2010CAIM487

a rescaling of the function v(ρ). For the best-fit interpolation we used the
linear-in-the-parameters regression curve by Matlab, with small by-hand
modifications at the left and right endpoints to better fit the data. The
two functions v(ρ) and ρ(v) are plotted in Fig. 5, and the function f(ρ)
computed by (2) is plotted in Fig. 6. These experimental results can be
compared, for example, with those in [2–4,12,13].
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Fig. 5. The functions v(ρ) (left) and ρ(v) (right). Data and best-fit interpolation.
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Fig. 6. The function f(ρ). Data and resulting interpolation.

3.2. Numerical approximation

In order to develop a numerical scheme for equation (1), we define as
usual a numerical grid in [xentry, xexit] × [t0, tf ] where tf is the final time.
We denote by ∆x the space step size and by ∆t the time step size. We
denote by Nx and Nt the number of space and time steps respectively, and
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by (xi, tn), i = 1, . . . , Nx, n = 1, . . . Nt the grid points. For a function u
defined on the grid we write uni = u(xi, tn).

Equation (1) is discretized by means of the Godunov scheme. A detailed
description of the scheme can be found in several books and papers (see
for example [16] or [5]) so we do not report it here. As it is well known,
the Godunov scheme needs a CFL condition to be satisfied. Due to the
velocities into play (up to 130 km/h), we choose a rather large space step,
namely ∆x = 700 m, and a rather fine time step, namely ∆t = 9 sec.
Unfortunately, this grid makes it impossible an accurate computation of
the numerical error because some cells may have no real data available.
To overcome this problem, after computation we average the solution to a
rougher grid with ∆t = 2.5 min.

The numerical solution of equation (1) on the grid is denoted by ρni ,
and its extension (by linear interpolation) on all over the space-time box
is denoted by ρ̃(x, t). Using the function v(ρ) previously computed, we get
the average approximate velocity ṽ(x, t) = v(ρ̃(x, t)).

We also denote by σn
i the average density in the cell (i, n) computed by

means of the data and of the function ρ(v). Finally, we denote by σ̂n
i (n̄) the

average density in the cell (i, n) computed by means of the data processed
before time tn̄. If σ̂

n
i (n̄) cannot be defined (because of missing data), its

value is set to N/A.

3.3. Initial condition

As it can be seen in Fig. 2, if we choose t0 = 0, we do not have enough
data to compute a reliable approximation of ρ0 at every point of the road.
This is true also if we postpone the beginning of the simulation at some
time t0 > 0. To overcome this issue, we choose t0 > 0, and then we use all

data available at that time to compute a suitable initial condition ρ0. Note
that not all data registered within time t0 are already available at t0, due
to the delay between measurement and processing. Hereafter we denote by
n0 the time step corresponding to t0.

In order to compute ρ0, we have tried two different strategies:

1. We start the simulation at time t = 0 with a groundless pre-initial con-
dition ρ(x, 0) ≡ ρmax/2. Then, by means of the numerical scheme, we
compute the approximate solution until time t0, correcting it with ex-
perimental data. More precisely, once ρni is computed, we check if σ̂n

i (n0)
is not N/A, i.e. if there are available data the approximate solution can
be corrected with. If this is the case, we set

ρn,correctedi = λσ̂n
i (n0) + (1− λ)ρni
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where λ ∈ [0, 1]. The weight λ is chosen depending on how many data
concurred to the computation of the average value σ̂n

i (n0) (the more
the data the more reliable the value). In this fitting stage, the solution
assimilates all the available data, and becomes reliable all over the road.
Then, the function ρ̃(x, t0) is used as initial condition, and no more data
are used to correct the solution.

2. For every i = 1, . . . , Nx, we define

(3) φi(n,m) :=
1∑m

k=0Ci(k, n,m)

m∑

k=0

Ci(k, n,m)σ̂k
i (n)

where Ci(k, n,m) is an exponentially decreasing function of (tm − tk) if
0 < (tm− tk) ≤ 60 min, and Ci(k, n,m) = 0 if tm− tk > 60 min or σ̂k

i (n)
is N/A. Roughly speaking, φi(n,m) is a weighted average of the data
measured in the hour preceding time tm and available at time tn.
Due to the delay between measurement and processing, the most up-to-
date density function which can be computed by the data at time t is
that at time t − 10 min (approximately). To make this evident, in the
following we denote by t+0 the time t0 +10 min and by n+

0 the time step
corresponding to t+0 . So we refer to t

+
0 as the time at which the simulation

is actually done while numerical simulation starts at time t0 = t+0 − 10
min, with the initial condition

(4) ρn0

i = φi(n
+
0 , n0).

As a consequence of this delay, the solution at time t+0 (current time)
is actually a 10-minutes forecast. Similarly, a q-minutes forecast in the
future is actually a (q+10)-minutes forecast in the simulation.

Remark 3.1. In the absence of a predictive model like (1), the function
φ defined in (3) can be used to give short-time forecast of the traffic con-
ditions. More precisely, it is possible to compute the velocity at any time
t (past or future) by means of a weighted average of the data measured in
the hour preceding t and processed before the current time. We will refer
to this quantity as a static forecast. This approach is advantageous because
it gives results in real time, and, as expected, is quite effective in steady
traffic conditions.

3.4. Boundary conditions

The function ρentry(t) is not known for t > t0, and it depends on what
happens behind the road segment under consideration. As usual in traffic
models, the lack of boundary conditions is a relevant issue which cannot be
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completely solved, unless we restrict ourself to nonrealistic situations like a
circular road with no intersections. We just note that boundary conditions
become uninfluential in points quite far from the boundaries, because there
the density depends only on what happens in the considered road segment
(at least for a certain time). In our simulation we simply assume that in x =
xentry = 0 the traffic conditions remain unchanged during the simulation,
i.e. ρentry(t) = ρentry(t0) for t > t0. In addition, we assume Neumann zero
boundary condition in x = xexit = 18 km. The latter choice corresponds
to the fact that cars touching xexit just exit the road and they do not
have effect any more. Numerically speaking, to handle Neumann condition
a (Nx + 1)-th ghost node is added at the end of the road and then we set
ρnNx+1 = ρnNx

for every n.

4. Numerical results.

In this section we present numerical results obtained by means of the
model described above. Regarding the initial condition, experiments clearly
suggest that the second method we described in Section 3.3 performs better
than the first one, so we report only the results obtained by the second one.
We believe that this is mainly due to the fact that we do not filter data.

The most interesting and challenging events are with no doubt the for-
mation of queues, as well as their disappearance. We test our algorithm
on these cases, showing that the model is able to foresee the change of the
velocities with good accuracy.

In the following figures the exact solution σ (real data) is plotted with
squares, the approximate LWR solution ρ̃ is plotted with a solid line, and
the static forecast (see Remark 3.1) is plotted with a cross-dashed line.

Test 1. As first test, we run the algorithm choosing t+0 = 78 min and
the South→North direction, for a 20 minutes forecast (i.e. until t=98 min).
In Fig. 7-left we show the initial condition, which is relative to the time
t0 = 68 min. In Fig. 7-right we show the outcome at the end of simulation.
A flattening effect is clearly visible, which tends to make the LWR solution
piecewise constant. Nevertheless, it is evident that the scheme is able to
foresee the formation of the queue in the first part of the road (compare
the result with data plot in Fig. 2-bottom). As expected, the static forecast
is completely wrong in the first part of the road while it is quite accurate
in second part.

Let us denote by the set of indices I ⊂ {1, 2, . . . , Nx} a portion of the
considered road. In order to compute the error made by the algorithm, we
define enI as the absolute value of the difference between the approximate
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Fig. 7. Test 1. Initial condition at t0 (left) and solution at t+
0
+ 20 min (right).

and the exact velocity at a given time step n, making an average on the
portion I of the road,

enI :=
1

|I|

∑

i∈I

|v(ρni )− v(σn
i )|.

In Fig. 8-left we show the error enI as a function of n, with I =
{
1, . . . ,

[
Nx

2

]}

(first half of the road) and in Fig. 8-right with I =
{[

Nx

2

]
+ 1, . . . , Nx

}
(sec-

ond half of the road). The black spot on the horizontal axis corresponds to
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Fig. 8. Error for test 1. First half of the road (left) and second half of the road (right).
Time goes from 78-10 min to 108 min.

the time t+0 . The error of the LWR forecast is about 15 km/h in the seg-
ment where the queue is formed, and about 8 km/h in the steady segment.
The static forecast reaches an error of 35 km/h in the unsteady segment,
while it behaves like LWR elsewhere. Such a behaviour is found also in the
following tests.
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Test 2. In the second test we try to foresee the extinction of a queue.
We choose again the South→North direction and we set t+0 = 198 min. We
run the algorithm until the final time t = 238 min. In Fig. 9 we plot the
initial condition and the final result as before. It is evident that the scheme
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Fig. 9. Test 2. Initial condition at t0 (left) and solution at t+
0
+ 40 min (right).

is able to follow the changes in the traffic condition: in particular we go
from a situation where the first part of the road is highly congested while
the second part is rather free, to a situation where all the road is free but a
small zone immediately before the 8th kilometre. Again, the static forecast
shows the expected behaviour.

Test 3. In the third test we focus again on a queue formation. This time
we choose the North→South direction and we set t+0 = 126 min. We run
the algorithm until the final time t = 188 min. In Fig. 10 we plot the initial
condition and the final result. As in test 1, the scheme is able to catch
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Fig. 10. Test 3. Initial condition at t0 (left) and solution at t+
0
+ 62 min (right).

the formation of the queue at the end of the road. Note that this time the
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queue is created quite slowly, and sometimes remains unchanged for 10-20
minutes. Nevertheless, the scheme is quite accurate, this is probably due to
the nice choice of the flux f(ρ). In other less congested zones the scheme
is not able to catch small perturbation and the flattening effect dominates.
Here the static forecast is not available since the simulation runs more than
1 hour in the future.

Distributions of errors. In order to have a global idea of the abilities of
the model, we compute the error distribution for several forecasts. In more
detail, we run simulations with t+0 (p) = 30+5p minutes, p = 1, 2, . . . , pmax.
The initial delay of 30 minutes allows to preserve at least 20 minutes old
data to compute the initial condition, while pmax is computed in such a
way that we have some data for the computation of the error at the end
of simulation. Every simulation runs ∆n time steps in the future. Denoting
by n+

0 (p) the time step corresponding to t+0 (p), we define an error variable
Ei at every space node i = 1, . . . , Nx and p = 1, . . . , pmax,

Ep
i (∆n) :=

1

v

(
ρ
n+

0
(p)+∆n

i

) −
1

v

(
σ
n+

0
(p)+∆n

i

) .

Ep
i (∆n) is the error made in approximating the time needed to cover 1 km

at the velocity computed at node i at the end of simulation. In our opinion
this error measurement is particularly meaningful (probably more than the
absolute or relative error over the velocity) because it is the information
that drivers really pay attention to. In Fig. 11 we report the distributions
of the errors {Ep

i (∆n)}i,p for four choices of ∆n, corresponding to a 0,
15, 30 and 45 minutes LWR forecast, respectively. As it can be seen, the
distribution has a classical Gaussian behaviour, rather concentrated around
0. As the forecast becomes more challenging (30 and 45 minutes) the graph
becomes less symmetric, but it shows in any case a peak in 0.

Travelling times. Once a forecast of the traffic condition is available, a
forecast of the travelling time can be made. We have in mind a scenario
where a driver asks for the time she/he needs to reach some destination,
and the answer is given by means of a real-time traffic forecast. To this end,
it is important to note that even if we can rely on an accurate forecast of
the average velocity (in space and/or in time), this is not enough to get an
accurate estimate of the travelling time. Let us assume for example that
a driver has to cover 10 km. If the estimated average velocity is 60 km/h,
the estimated travel time is 10 min. On the other hand, if the real velocity
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Fig. 11. Travelling time error distribution for a 0 (top-left), 15 (top-right), 30 (bottom-
left) and 45 (bottom-right) minutes LWR forecast.

is 20 km/h for the first half of the road and 100 km/h for the second half
(60 km/h in average), the travel time is 18 min (8 minutes difference). It is
clear how important it is to compute the velocity on a space grid which is
as fine as possible. Moreover, the prediction itself is crucial, because traffic
conditions can change during the journey, leading to large changes in the
travelling time.

In order to test this feature, we use the results in Test 1 and 2 to make
a prediction of the travelling time needed to cover 14 km (from the 2nd km
to 16th km of the road). The equation to solve is

{
ẋ(t) = ṽ(x(t), t)
x(0) = 2 km.

until x ≤ 14 km. The velocity is explicitly time-dependent, because the
traffic conditions change in time. The equation is solved by the explicit Eu-
ler scheme. Table 1 summarizes the results. As expected, the static forecast
underestimates the travelling time in case of queue formation while overes-
timates the travelling time in case of queue extinction. The LWR forecast
gives better results, especially in the latter case. This is probably due to
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Table 1. Exact and estimated travelling times.

Parameters exact (min) static forecast (min) LWR forecast (min)

t+
0

as in Test 1 24 13 17

t+
0

as in Test 2 17 23 16

the fact that in a congested situation (low velocities into play), a small
error over the velocity forecast can lead to a large error over travelling time
forecast. This effect is instead mitigated in uncongested situations (high
velocities into play).

Conclusions

In this paper we have performed traffic forecast up to about 70 min-
utes, using data from Octo Telematics c© mobile sensors. The large data set
allowed us to have an accurate and reliable initial condition for the algo-
rithm, and then to run the simulation for long time in the future. Other
recent experiments of this kind [2,22] are instead limited to model the traf-
fic behaviour feeding regularly the algorithm with new incoming data. The
proposed model is able to foresee the changes in traffic conditions, thus al-
lowing to make travelling time forecasts. CPU time is less than 20 seconds
for Matlab simulation of 1-hour in real time.
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