
A Fast Marching Method for

Hamilton-Jacobi Equations Modeling

Monotone Front Propagations∗

Emiliano Cristiani†

November 15, 2008

Abstract

In this paper we present a generalization of the Fast March-
ing method introduced by J. A. Sethian in 1996 to solve numeri-
cally the eikonal equation. The new method, named Buffered Fast
Marching (BFM), is based on a semi-Lagrangian discretization and
is suitable for Hamilton-Jacobi equations modeling monotonically
advancing fronts, including Hamilton-Jacobi-Bellman and Hamilton-
Jacobi-Isaacs equations which arise in the framework of optimal con-
trol problems and differential games. We also show the convergence
of the algorithm to the viscosity solution. Finally we present sev-
eral numerical tests comparing the BFM method with other existing
methods.

Keywords Fast Marching methods, front propagation, semi-Lagrangian
schemes, Hamilton-Jacobi equations, optimal control problems.

AMS Primary, 65N12; Secondary, 49L20.

∗This research was partially supported by the MIUR Project 2006 “Modellistica
Numerica per il Calcolo Scientifico ed Applicazioni Avanzate” and by INRIA–Futurs
and ENSTA, Paris, France.

†E-mail: emiliano.cristiani@gmail.com, cristian@mat.uniroma1.it. Correspond-
ing address: via Nazario Sauro 21A, 00012 Villanova di Guidonia (RM), Italy. Tel.
+390774527776, Mobile: +393492639591

1

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 2

1 Introduction

The Fast Marching (FM) method is a numerical method for the eikonal
equation {

c(x)|∇T (x)| = 1 x ∈ R
n\Ω0

T (x) = 0 x ∈ ∂Ω0
(1)

where Ω0 is a closed set and c : R
n → R is Lipschitz continuous and

strictly positive. This equation appears in front propagation problems in
which the interface propagates in normal direction with speed c(x), more
precisely the t-level set of its viscosity solution T is the interface at time
t. The interface at time t = 0 is given by Γ0 = ∂Ω0. The FM method is
officially born with the paper of Sethian [22] in 1996 (see also his book [21]).
Before that, Tsitsiklis [26] already proposed a slightly different Dijkstra-
like algorithm based on a control-theoretic discretization which contains all
the basic ideas of the FM technique. The method is very powerful because
it is able to compute the viscosity solution of (1) much faster than any
other iterative algorithms in which every node of the grid is computed at
every iteration. Its computational cost is O(N lnN) where N is the total
number of grid nodes. Since its first appearance, it was applied in many
fields like mesh generation, seismology, geodesic computation, image and
video segmentation, image enhancement, dislocation dynamics and so on.
The original FM method is based on the following up-wind first-order finite
difference approximation (we choose n = 2 to avoid cumbersome notations)

(max{max{D−
x , 0},−min{D+

x , 0}})2 + (2)

+(max{max{D−
y , 0},−min{D+

y , 0}})2 = c−2
i,j

where D−
x =

Ti,j−Ti−1,j

∆x
, D+

x =
Ti+1,j−Ti,j

∆x
(and analogous definition for D+

y

and D+
y) and Ti,j = T (i∆x, j∆y) as usual. The FM technique consists in

computing the values at the nodes in a special order such that convergence
is reached in just one iteration. At a generic step of the algorithm the grid
nodes are divided in three sets, accepted, narrow band and far nodes. The
accepted nodes are those where the solution has been already computed
and where the value can not change in the following iterations. The nar-
row band nodes are the nodes where the computation actually takes place
and their value can still change at the following iterations. Finally, the far
nodes are the remaining nodes where an approximate solution has not been
computed yet. In physical terms, the far nodes are those in the space region
which has not been touched by the front yet, the accepted nodes are those
where the front has already passed through and the narrow band nodes
are, iteration by iteration, those lying in a neighborhood of the front. The
crucial point is how the nodes in the narrow band are chosen to become
accepted. This condition must guarantee that the value of those nodes can

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 3

not change in following iterations. In the classical FM method the criterion
is picking the node (only one at a time) with the minimal value.
In the last decade many authors tried to improve the FM method in both
velocity and accuracy. Other papers were devoted to the extension of the
FM method to more general equation. This is probably the most difficult
task since the FM method strictly relies on some particular properties of
the eikonal equation as we will see in section 2.2.
Kimmel and Sethian [17] extended the FM method to triangulated domains
on manifolds preserving the same computational complexity (see also [24]).
Again Kimmel and Sethian [18] extended the FM method to an equation
of the form (1) in which c depends on x and T itself. They apply their
result to the solution of the Shape from Shading problem.
Sethian and Vladimirsky [23] extended the FM method to equation of the
form (1) in which c depends on x and ∇T/|∇T | on unstructured grids. This
equation includes the case of the anisotropic front propagation problem.
The authors explain in detail the limitations of the classical FM technique
and how they can be overcome. Unfortunately they did not perform many
numerical tests and did not present CPU times needed for computations.
Prados [19] proposed an interesting generalization of the FM method to
solve Hamilton-Jacobi-Bellman equations. The new method changes the
way a node is accepted, it is not the node with the minimal value T in the
narrow band but it is the node with the minimal value T − φ where φ is a
viscosity subsolution of the equation. Of course this can not be considered
a real numerical method because a subsolution must be known, neverthe-
less this procedure can be a useful suggestion for further developments.
The papers [15, 14] made a comparative study of FM method and other ex-
isting methods for the eikonal equation, in particular with the Fast Sweep-
ing method (see [25, 20] and references therein) which can overcome FM
method in some situations. Carlini et al. [4, 5] extended the FM method
to the evolutive eikonal equations modeling non-monotone front propaga-
tion problems in which the velocity c of the front can change sign in space
and/or in time. The authors apply their results to the simulation of the
dislocation dynamics in which the velocity c does not depend locally on a
point x but is given in an integral form.
Vladimirsky [27] deals with equations of the form (1) in which c depends
on x, ∇T (x) and T . He presents a rigorous analysis and some numerical
experiments.
The author and Falcone [9] introduced the Characteristic FM method for
the eikonal equation which, similarly to Kim [16], accepts more than one
node at the same time and it is faster than the FM method in most cases.
Again the author and Falcone [8] (see also [6]) introduced the FM method
based on the semi-Lagrangian discretization in the framework of control
theory and minimum time problem. The semi-Lagrangian scheme is proved

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 4

to be more accurate than the finite difference scheme classically used in FM
method although they are both first order schemes.

In this paper we introduce a new FM method based on a semi-Lagrangian
discretization which is able to compute an approximate solution of Hamilton-
Jacobi equations modeling front propagation problems in which the front
does nor pass more than one time on the same point. This class of equations
includes Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations
which arise in the framework of optimal control problems and differential
games. The new method, named Buffered Fast Marching, uses a forth set
(the buffer) in addition to the sets accepted, narrow band and far to menage
the nodes. The buffer is in the middle between the narrow band and the
accepted zone and contains the nodes until they can be accepted once and
for all. The size of the buffer depends on the anisotropy of the problem.
In the case of the eikonal equation (1) (corresponding to an isotropic front
propagation) the buffer disappears and the Buffered Fast Marching method
changes back into the Fast Marching method.

The paper is organized as follows. In section 2 we introduce the equa-
tions we deal with and we recall the FM method for the eikonal equation
based on the semi-Lagrangian discretization introduced in [8]. We also
show why the FM technique does not work for more general equations. In
section 3 we introduce the Buffered Fast Marching (BFM) method, detail-
ing the algorithm and its properties. Finally in section 4 we present some
numerical tests on a series of benchmarks commenting the general behavior
of the solutions and CPU times.

2 Background

In this section we introduce the equations we deal with and we recall the
FM method based on the semi-Lagrangian discretization introduced in [8].
It will be the foundation of the Buffered FM method proposed here. We
also recall the limitations of the FM method.

2.1 Related equations

A front propagation problem consists in recovering the position of a front
Γt : R

+ → R
n (for example the interface between two layers) at any time t

starting from an initial configuration Γ0. We denote by Ωt the region inside
the front Γt. One of the most popular method to face this kind of problem
is the level set method [21] in which we look for a function u : R

n×R
+ → R

such that Γt = {x ∈ R
n : u(x, t) = 0}. It is well known that the function u

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 5

is solution of the following PDE

ut(x, t) + φ(x, t, u(x, t),∇u(x, t)) · ∇u(x, t) = 0 , x ∈ R
n , t > 0 (3)

where φ is the velocity of the front (note that it can also depend on u(·)
all over the domain and on higher order derivatives as well) and the initial
condition u(x, 0) is chosen as the signed distance function from Γ0. If the
velocity field φ is such that the front did not pass for any point x more
than one time the evolution is said to be monotone, i.e.

Ωt1 ⊂ Ωt2 for any t1 < t2. (4)

If (4) is satisfied, it is proved in [21] that the front can be recovered by
Γt = {x ∈ R

n : T (x) = t} where T is the viscosity solution of the following
time-independent equation

φ(x, T,∇T) · ∇T (x) = 1 , x ∈ R
n\Ω0. (5)

where we use again the symbol φ for the velocity with an abuse of notation.
If the direction of the velocity is normal to the interface the function φ
has the form φ(x, T,∇T) = c(x) ∇T

|∇T | , so equation (5) can be written as

c(x)|∇T (x)| = 1 (eikonal equation).
By the Kružkov transform v(x) = 1 − e−T (x), the equation (5) becomes

v(x) + φ(x, v,∇v) · ∇v(x) − 1 = 0 , x ∈ R
n\Ω0. (6)

This equation is very general and is found in many applications, for ex-
ample in the minimum time problem as follows [1, 6]. Let us consider the
controlled nonlinear dynamical system

{
ẏ(t) = f(y(t), a(t)) , t > 0
y(0) = x

(7)

where y(t) is the state of the system, a(·) ∈ A is the control of the player,
A being the set of admissible controls defined as

A = {a(·) : [0, +∞) → A, measurable},

and A is a given compact set of R
m. Assume hereafter f : R

n × A → R
n

is continuous in both variables and Lipschitz continuous with respect to y
uniformly in a. The unique trajectory solution of (7) will be denoted by
yx(t; a(·)). In the minimum time problem the final goal is to find an optimal
control a∗(t) such that the corresponding trajectory yx(t; a∗(·)) minimizes
over all admissible trajectories the time needed by the system to reach a

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 6

given closed target T ⊂ R
n. The optimal control a∗(t) can be computed

by means of the value function T defined as

T (x) :=

{
inf

a(·)∈A
min{t : yx(t; a(·)) ∈ T } if yx(t; a(·)) ∈ T for some t ≥ 0

+∞ if yx(t; a(·)) /∈ T for all t ≥ 0.
(8)

By the Dynamic Programming Principle it can be shown that v = 1− e−T

is the viscosity solution of

{
v(x) + max

a∈A
{−f(x, a) · ∇v(x)} − 1 = 0 x ∈ R

n\T
v(x) = 0 x ∈ ∂T .

(9)

Equation (9) is known as the Hamilton-Jacobi-Bellman equation for the
minimum time problem. Note that v is always in the interval [0, 1] while
T is in general unbounded. Finally note that defining

a∗(x,∇v(x)) := arg max
a∈A

{−f(x, a) · ∇v(x)},

φ(x,∇v(x)) := −f(x, a∗(x,∇v(x))) and Ω0 := T
the equation (9) takes the general form (6).

In order to discretize equation (9), we will introduce a structured grid
G denoting its nodes by xi , i = 1 . . . , N , i.e. G = {xi, i = 1, . . . , N}. It
was proved in [2] that the semi-Lagrangian scheme stems from a discrete
version of the Dynamic Programming Principle (see f.e. [1]), this leads to
the equation

{
w(xi) = min

a∈A
{βw(xi − hf(xi, a))} + 1 − β for xi ∈ G\T

w(xi) = 0 for xi ∈ G ∩ T
(10)

where w is an approximation of v, β = e−h, h is a discretization step
and we defined w = 0 also in the internal nodes of T . We use a linear
interpolation to approximate the value w(xi−hf(xi, a)). It has been shown
in [11] that equation (10) has a unique solution w in the class of piecewise
linear functions defined on the grid. It can be computed by a fixed point
technique, iterating until convergence

w(k+1) = Λ(w(k)) k = 0, 1, 2, . . . (11)

where Λ(w)i = mina∈A{βw(xi −hf(xi, a)}+1−β and w(0) is equal to 0 in
G∩T and 1 elsewhere. Since we want to use just the three nearest nodes to
xi to compute w(xi − hf(xi, a)), we choose h = h(xi, a) = ∆x/|f(xi, a)|.
Of course the constant β = e−h must be included in the minimum over a’s.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 7

We also recall the Hamilton-Jacobi-Isaacs equation which arises in the
framework of differential games [1, 12],

{
v(x) + min

b∈B
max
a∈A

{
− f(x, a, b) · ∇v(x)

}
− 1 = 0 x ∈ R

n\T
v(x) = 0 x ∈ ∂T .

(12)

Here f is the dynamics for the game, A and B are two compact sets in R
m

representing respectively the control sets for the first player and the sec-
ond player. The two players can both steer the system, the first wants the
system reaches the target T in the minimum time while the second player
wants the system goes away for ever. The value function T = − ln(1 − v)
represents the time to reach the target if both players play optimal nonan-
ticipative strategies.

2.2 The semi-Lagrangian FM method and its limita-

tions

It is easy to show that choosing in (9)

f(x, a) = c(x)a , A = B(0, 1) , T = Ω0

and re-writing the equation in T = − ln(1 − v), we get back to the eikonal
equation (1). In the particular framework of the eikonal equation it was
introduced in [8] the FM method based on the semi-Lagrangian discretiza-
tion and it was proved that the new algorithm is slightly slower than the
original FM method but much more accurate.
The idea which is behind the semi-Lagrangian FM method is rather simple:
we follow the initialization and all the steps of the classical FM method
but the step where the value at the node xi is actually computed where we
use the semi-Lagrangian scheme instead of the finite difference scheme.

As we said in the introduction, in the last ten years the extensions of
the FM method to more general equations were quite timid and limited
to equations very similar to (1). This is due to the fact that the method
strictly relies on its physical interpretation based on the isotropic front
propagation problem. From the mathematical point of view, it appears
that labeling as accepted the node in the narrow band with the minimal
value is suitable only in the case the characteristics curves of the equation
coincide with the gradient lines of its solution. This is due to the fact that
accepting the minimal value in the narrow band means to compute v (or
T) in the ascending order and then to maintain the right up-winding only

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 8

in the case the optimal control a∗(x) := arg max
a∈A

{−f(x, a) ·∇v(x)} satisfies

a∗(x) = − ∇v(x)

|∇v(x)| .

This is the case for the eikonal equation but it is not true in the general
case. As stated in the Criterion 5.1 of [23], the FM method fails exactly
where characteristics and gradient lines lie in different simplices (but it is
able to compute the right solution elsewhere, even if the two directions
does not coincide exactly).
In the case of differential games it is even more clear that the accepting-
the-minimum rule of the FM technique can not work. In fact, the optimal
trajectory for the second player aims for the higher values of the value
function v.

3 The Buffered Fast Marching method

In this section we present the new method in detail. We also present a
convergence result and some considerations about the computational cost.

3.1 Main idea of the BFM method

As we explained in section 2.2, the update procedure of FM method is not
suitable for the numerical solution of equations different from the eikonal
equation. On the contrary the BFM method is designed to solve correctly
and rapidly any equation of the form (6).
In the proposed algorithm, the node in the narrow band with the minimum
value is not accepted as it happens in the FM method but it is moved
in a buffer. All the nodes in the buffer are recomputed at each step of
the algorithm until it is sure that their value can not change any more,
this is guaranteed by a local condition which will be introduced below.
After that, they are finally labeled as accepted (see Fig. 1). Note that the
size of the buffer strictly depends on the anisotropy coefficient and so the
computational cost does.
We choose how the nodes go out from the buffer as follows. In a copy of
the matrix where the computation is being performed we substitute the
value v = 1 for all the values in the narrow band. Then we compute until
convergence the nodes in the buffer iterating the computation (for example
(11)). After that, we repeat the procedure substituting the value v = 0 for
all the values in the narrow band. Finally, we look for the nodes whose
values have not changed in the two steps. In other words, we treat the
narrow band as part of the boundary of the computation domain, imposing
at nodes in it two different boundary conditions. The first one is v = 1,

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 9

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

����

���
���
���
���

���
���
���
���

narro
w band

BUFFER

accepted
BUFFERfar

far

far

T

Figure 1: Division of the nodes: target, accepted, part of the buffer which
is going to be accepted, buffer, narrow band and far

that is the maximum value a node can assume and the second is v = 0
that is the minimum value a node can assume. Clearly, if a node does not
change its value after this kind of modification it means that its value does
not depend on the next steps of the algorithm whatever it happens and
then it can be labeled as accepted.

3.2 The algorithm

Let us introduce the algorithm. In the following, the narrow band will be
denoted by NB and the buffer by BUF . We also introduce the following

Definition 3.1 (neighboring nodes for the semi-Lagrangian scheme). Let
the dimension n be 2 and let xi,j be a node. We define the set of neighboring
nodes to xi,j as

NSL(xi,j) := {xi±1,j , xi,j±1, xi+1,j+1, xi+1,j−1, xi−1,j+1, xi−1,j−1}.

The nodes in NSL(xi,j) are the nodes that appear in the stencil of the first
order semi-Lagrangian discretization. The above definition can be easily
extended to the n-dimensional case.

The BFM algorithm
Initialization

• Locate the nodes belonging to the initial front Γ0 = ∂Ω0 = ∂T and
label them as accepted. They form the set Γ̃0. Impose v(Γ̃0) = 0

(corresponding to T (Γ̃0) = 0).

• Define NB as the set of the nodes belonging to NSL(Γ̃0), external to
Γ0.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 10

• Iterate the computation in NB until convergence (as in the classical
fixed point method).

• Label the remaining nodes as far, setting their values to v = 1 (cor-
responding to T = +∞).

Main Cycle

1. Let A be the node with the minimum value among all the nodes in
NB. Find A, remove it from NB and insert it in BUF . Move the
far nodes of NSL(A) into NB and (re)compute the nodes in NSL(A)
which are not accepted.

2. Compute all the nodes in BUF until convergence (as in the classical
fixed point method).

3. In a copy of the matrix where the computation is being performed,
substitute v = 1 for the value of the nodes in NB. Then iterate the
computation on all the nodes in BUF until convergence.

4. Again in the copy of the matrix, substitute v = 0 for the value of the
nodes in NB. Iterate again the computation on all the nodes in BUF
until convergence.

5. Remove from BUF and label as accepted the nodes whose value is
not changed in the two previous steps.

6. If NB is not empty go back to step 1, otherwise iterate the computa-
tion on all the nodes in BUF until convergence and stop computation.

Remark 3.1 It is possible that in step 1 of the main cycle the node A is
not unique. In this case, the procedure described for the node A can be
repeated for all other nodes with the same value before passing to step 2.

Real implementation
Unfortunately, the described algorithm can be slower than the classical
iterative scheme in many situations. Nevertheless, some tricks can speed
up the computation. The real implementation of the method includes all
the following modifications.

M1. Assuming that the solution is increasing along characteristics (this is
the typical situation in the minimum time problem, for example) we
use the current minimal value vmin in the NB instead of v = 0 in
step 4. In fact the values of not-yet-accepted nodes will be greater
than vmin in the following iterations.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 11

M2. We perform steps 2-3-4-5 every p > 1 executions of the main cycle.
It seems that p = p(N) =

√
N/2 is a good choice in most cases (N

being the total number of nodes and the dimension of the problem
being 2). This leads to a larger buffer but to a faster algorithm.

M3. It is not really needed to store a second matrix to perform interme-
diate computations described in steps 3 and 4. Saving the values
of narrow band and buffer nodes in the same dynamic lists which
contain their indexes, we can modify the full matrix and then easily
restore the old (right) values. This leads to a faster algorithm and a
gain in memory requirement.

M4. In step 5 we accept the nodes such that their variation is smaller than
a given quantity ε.

M5. In steps 3 and 4 it is not needed to be very accurate because we are
just interested if the values in BUF change or not. So we iterate the
computation for each node xi,j until

|w(k+1)(xi,j) − w(k)(xi,j)| < ε′, k = 0, 1, . . .

M6. The step 3 is completely skipped because the far zone already plays
the role of a moving boundary condition with values v = 1. Moreover,
in step 2 all the nodes in BUF are computed just once.

Remark 3.2 Modifications M1, M2 and M3 does not modify the solution
with respect to the ideal algorithm. They are just tricks to speed-up the
convergence. Modifications M4 and M5 produce an error in the solution
which is expected to vanish as ε and ε′ tend to zero (as confirmed by
numerical tests). Modification M6 seems to not affect the solution, but
this is just an experimental evidence.

Remark 3.3 (BFM as generalization of FM) Let us consider the case of
the eikonal equation (1) (isotropic front propagation) and include in the
algorithm the ”natural” modification M1, but not M2. Then the buffer’s
size is never greater than one and the BFM method changes back into the
FM method. To prove this, let us define the node A as in step 1. We
easily note that it is not possible that the value v(A) changes in step 2.
In fact, if it changes, it means that it can be still improved, and this is in
contradiction with the prove of convergence of the FM method given in [8].
We can conclude by contradiction as follows. If the node A inserted in BUF
in step 1 does not exit BUF in step 5, then the value v(A) has changed in
step 3 or step 4 modified. This implies that the value v(A) was influenced
by values greater or equal than itself, and this is not possible for the eikonal
equation.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 12

3.3 Properties of the BFM

To prove the convergence of the algorithm to the viscosity solution of equa-
tion (6) we adopt the following strategy. We show that the BFM computes
the same solution of the classical iterative algorithm and then we recover
convergence and a priori estimates by the results already available for that
scheme (see f.e. [1] for Hamilton-Jacobi-Bellman equations).

Proposition 3.1 (Convergence to the viscosity solution) Assume
equation (6) has a unique viscosity solution. Let v̄ : G → [0, 1] be its
discrete solution computed by the classical iterative (fixed point) scheme
based on a convergent numerical scheme and v : G → [0, 1] be the discrete
solution of the same equation computed by the BFM method based on the
same scheme. Then v̄(X) = v(X) for any node X ∈ G.

Proof. By induction on the cycles of the algorithm. Let us denote respec-
tively by ACC(s), BUF (s), NB(s) and FAR(s) the sets of nodes accepted,
buffer, narrow band and far at the generic cycle s of the algorithm. Let
A(s) = arg min

X∈NB(s)
{v(X)} be the node with the minimal value in NB(s).

We will prove that, for any s ≥ 0,

NSL(BUF (s)) ∩ FAR(s) = ∅ (13)

and
v(X) = v̄(X) for any X ∈ ACC(s) (14)

and then we easily conclude. For s = 0, assertion (13) is clearly true since

BUF (0) = ∅. Also assertion (14) is true because ACC(0) = Γ̃0 and the

values v(Γ̃0) and v̄(Γ̃0) are imposed by the boundary condition on Γ̃0.
Going from cycle s to cycle s + 1, we have (see step 1 and 5)

BUF (s+1) = (BUF (s) ∪ {A(s)}) \ (ACC(s+1)\ACC(s))

and
FAR(s+1) = FAR(s) \ (NSL(A(s)) ∩ FAR(s)).

As a consequence, the only new node in BUF (s+1) is surrounded by nodes
not in FAR(s+1). Then we have

NSL(BUF (s+1)) ∩ FAR(s+1) = ∅.

In order to show that (14) is true for s + 1, let us define the numerical
boundaries of BUF (s) as follows (see Fig. 2)

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 13

���
���
���

���
���
���BUFFER

accepted

far

narrow band

farfar

ΓNB

ΓACC

BUFFER

Figure 2: The buffer zone and its boundaries.

Γ
(s)
ACC = {X ∈ ACC(s) : NSL(X) ∩ BUF (s) 6= ∅},

Γ
(s)
NB = {X ∈ NB(s) : NSL(X) ∩ BUF (s) 6= ∅}.

Clearly we have Γ
(s)
ACC ∩ Γ

(s)
NB = ∅ since ACC(s) ∩ NB(s) = ∅. By (13),

the nodes in BUF (s) are surrounded only by nodes in ACC(s) and NB(s)

(and BUF (s) itself, of course) so that the values of the nodes in Γ
(s)
ACC and

Γ
(s)
NB play the role of two boundary conditions for BUF (s). The algorithm

produces three solutions in BUF (s),

v(s) with v(Γ
(s)
NB) and v(Γ

(s)
ACC) unchanged,

v
(s)
1 with v(Γ

(s)
NB) = 1 and v(Γ

(s)
ACC) unchanged,

v
(s)
0 with v(Γ

(s)
NB) = 0 and v(Γ

(s)
ACC) unchanged.

and we have

ACC(s+1) = ACC(s) ∪ {X ∈ BUF (s) : v(s)(X) = v
(s)
1 (X) = v

(s)
0 (X)}.

By (14) we know that v(Γ
(s)
ACC) = v̄(Γ

(s)
ACC) while any boundary condition

on Γ
(s)
NB has not influence for the new accepted nodes. As a consequence,

the iterative algorithm and the BFM method must compute the same so-
lution in ACC(s+1)\ACC(s) and then v(ACC(s+1)) = v̄(ACC(s+1)). �

3.4 Some considerations on the computational cost

We always denote by N the total number of nodes in the grid. We assume
for simplicity that we are working on a square grid in dimension 2 so each

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 14

dimension has
√

N nodes.
Classical iterative method. The iterative (fixed point) method consists in
computing the solution of the equation on every node of the grid until
convergence is reached. Since it needs O(

√
N) iterations to converge, its

complexity is of order O(N
√

N)

FM method. The FM method has a complexity of order O(N lnNNB)
where NNB is the number of nodes in the narrow band (it varies at each
step). NNB is bounded by N but in general it is expected to be of order

√
N

because the front has dimension 1, so its computational cost is O(N ln
√

N).
The term O(ln

√
N) comes from the need of keeping an order in the list

containing the nodes of the narrow band (f.e. by an heap-tree structure),
so that it is fast to pick the node with the minimal value at each step. To
this end it is important to note that the sequence of the minimal values of
the narrow band is in many cases very close to be increasing, this means
that a simple insertion sort is not so costly as in the randomly-ordered case.
For this reason we did not implement an heap structure to store the nodes
but a simple dynamic linked list. By experiments it seems that the factor
O(ln

√
N) is in fact O(1) for two dimensional problems and a relatively

small number of nodes (otherwise this is not true, see for example [3]).

BFM method. As we already remarked, in the case of isotropic front prop-
agation problems the BFM method changes back into the FM method. So
we expect a computational cost of the same order in the best case. In the
worse case the buffer becomes larger and larger and we need to solve an
iterative problem on the buffer to accept just few nodes or even any node
at all. This leads to a computational cost greater than that of the iterative
algorithm. Experiments says (see next section) that BFM method behaves
like FM method in most cases, although the constant in front of N ln

√
N

is larger for the BFM method (of course BFM method can deal with more
general equations).

4 Numerical tests

In this section we perform some tests on equations of the form (9) and (12).
The aim is to compare numerical results and CPU times for the classical it-
erative method, the FM method and the BFM method (with modifications
M1-M6). For the classical iterative method we use the Fast Sweeping (FS)
technique to speed up the convergence. This technique consists in comput-
ing over the grid in four alternate directions (for example from North to
South, from South to North, from East to West and from West to East)
until convergence is reached (see [25, 20] and references therein for details).
The algorithms are implemented in C++ on a PC with a Pentium IV 2.60
GHz processor and 256 MB RAM. In the following we will consider the

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 15

solution of the iterative method as the exact solution and we compute the
error of the other two methods with respect to that solution. Although this
is obviously not true (semi-Lagrangian scheme can produce bad results in
some cases due to the numerical diffusion) we can not expect neither FM
nor BFM overcome the iterative method since the three methods are based
on the same numerical scheme. We compare the methods on 512, 1012 and
2012 structured grids (the number of nodes is chosen to have a grid node
corresponding to the point (0, 0)).
Computation is done in a square domain Q on a structured grid. As stop-
ping criterion for the iterative Fast Sweeping method we used

‖v(k+1) − v(k)‖∞ < 10−16.

The L1 error is defined as

E1 =
1

|Q|

∫∫

Q

|T − T FS|

where T is the solution computed by FM or BFM and T FS is the solu-
tion computed by FS. Note that the difference with respect to the relative
error Ẽ1 = 1

|Q|

∫∫
Q
|T−T FS|/T FS is not significant so it will be not reported.

Except for the first test (eikonal equation), the FM method is known to
compute an incorrect solution and then it is not a real alternative to FS
and BFM. Nevertheless we think it is interesting to show the error and the
CPU time for the FM method in order to study its robustness with respect
to the anisotropy of the problem.

For the BFM, the values of the parameters ε (see step M4) and p (see
step M2) are reported in the tables test by test while the value of ε′ (see
step M5) is fixed to 10−6.

Test 1: Eikonal equation

In this test we solve the eikonal equation |∇T (x, y)| = 1 in [−2, 2]2 coupled
with a Dirichlet boundary condition T (0, 0) = 0. This equation can be
written in the form (9) choosing f(x, y, a) = a and A = B(0, 1) ⊂ R

2. We
discretized the unit ball with 16 points equally spaced on the boundary.
The level sets of the solution T (x, y) = x2 + y2 correspond to an isotropic
front propagation so the FM method can be used. By Table 1 we can see
that the three methods compute the same solution. Here FS method needs
just four iterations to reach convergence. Nevertheless, FM is the fastest
method. BFM is slower than FM due to the time spent to menage the
buffer (even if here the buffer contains only one node at each step). The

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 16

Table 1: Errors and CPU times for Test 1

method ∆x N p ε E1 CPU time (sec) CPU N→4N

FS 0.08 512 – – – 0.04 –

BFM 0.08 512 25 10−3 0 0.07 –

FM 0.08 512 – – 0 0.02 –

FS 0.04 1012 – – – 0.17 4.2

BFM 0.04 1012 50 10−3 0 0.27 3.8

FM 0.04 1012 – – 0 0.1 5.0

FS 0.02 2012 – – – 0.7 4.1

BFM 0.02 2012 100 10−3 0 1.12 4.1

FM 0.02 2012 – – 0 0.38 3.8

last column reports the ratio between the CPU time for a 4N grid and a
N grid. The value 5.0 for the FM with N = 1012 is not completely correct
because the FM with N = 512 is too fast to be precisely measured.

Test 2: Eikonal equation on a manifold

In this test we solve an anisotropic front propagation problem, choosing in
(9)

f(x, y, a1, a2) =
(a1, a2)√

1 + (5a1 + 5a2)2
, (a1, a2) ∈ B(0, 1) ⊂ R

2

and Dirichlet boundary condition v(0, 0) = 0. This choice corresponds to
solving the eikonal equation on the plane z = 5x + 5y (see [23]). The unit
ball is discretized in 16 points and Q is again [−2, 2]2. In Fig. 3 we show the
exact solution and the solution computed by the FM method. As shown in
[23], the FM method is not able to compute the right solution even if we
increase the number of nodes.
By Table 2 and Fig. 4 we see that the behavior of BFM is quite good since
it preserves the order of the scheme with a significant difference in CPU
time.
Note that the error of BFM does not converge to zero as the grid is refined
because we used a fixed ε in all cases.

Test 3: Lunar landing

In this test we solve equation (9) with
{

f1(x, y, a) = y
f2(x, y, a) = a

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 17

Table 2: Errors and CPU times for Test 2

method ∆x N p ε E1 CPU time (sec) CPU N→4N

FS 0.08 512 – – – 0.37 –

BFM 0.08 512 25 10−3 0.02 0.09 –

FM 0.08 512 – – 0.87 0.02 –

FS 0.04 1012 – – – 2.49 6.7

BFM 0.04 1012 50 10−3 0.01 0.45 5.0

FM 0.04 1012 – – 1.02 0.09 4.5

FS 0.02 2012 – – – 13.55 5.4

BFM 0.02 2012 70 10−3 0.02 1.67 3.7

FM 0.02 2012 – – 1.01 0.4 4.4

exact solution
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

FM−SL
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 3: Test 2: exact solution (left) and solution computed by FM
method (right), 101 × 101 grid.

and Dirichlet boundary condition v(0, 0) = 0. We chose A = {−1, 1}. This
test correspond to the classical one-dimensional minimum time problem in
which the dynamics is ẍ = a and a can be chosen in {−1, 1}. This is a
difficult test because of the strong mutual dependency of nodes. Moreover,
the effect of boundary condition is very strong so we decided to perform
computation on the domain [−5, 5]2 and to analyze the results on the sub-
domain [−2, 2]2. Results are shown in Table 3.
As the grid size increases, we need to decrease the constant ε in order to
maintain the same order in the error. Not surprisingly, the FM computes
a vary bad solution.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 18

SL−IT
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

BFM
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 4: Test 2: solution computed by FS method (left) and BFM method
(right).

Table 3: Errors and CPU times for Test 3

method ∆x N p ε E1 CPU time (sec)

FS 0.2 512 – – – 0.13

BFM 0.2 512 12 10−3 0.07 0.01

FM 0.2 512 – – 1.54 0

FS 0.1 1012 – – – 0.67

BFM 0.1 1012 25 10−4 0.07 0.15

FM 0.1 1012 – – 3.21 0.02

FS 0.05 2012 – – – 3.91

BFM 0.05 2012 50 10−5 0.05 2.05

FM 0.05 2012 – – 6.11 0.11

Test 4: Tag-Chase game with state constraints

In this test we solve equation (12) with

{
f1(x, y, a) = VAa
f2(x, y, b) = VBb

where a, b ∈ {−1, 0, 1}. This test models the one-dimensional Tag-Chase
game where the two players A and B are constrained to run in the segment
[−2, 2]. The game is set in Q = [−2, 2]2 ⊂ R

2. The velocities VA for the
pursuer and VB for the evader are constant. We choose VA = 2 and VB = 1.
The axis of abscissas represents the coordinate xA of the Pursuer and the
axis of ordinate represents the coordinate xB of the Evader. The target
is T = {(xA, xB) : xA = xB} that is the set of point where the capture
occurs (see [12, 10, 7] for more details on the model and recent results on

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 19

differential games with state constraints).
In Fig. 5 we show the exact solution with one optimal trajectory starting
from the point (−1.5, 0). We show the result only in half domain due to the
symmetry of the solution. Clearly in this case characteristics and gradient
lines does not lie on the same simplex so the FM fails. In Fig. 6 we show
the solution computed by FS (left) and by BFM (right). We can see very
well the effect of numerical diffusion due to the scheme but again the two
solutions are very similar.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Exact solution

Figure 5: Test 4: exact solution with an optimal trajectory starting from
(−1.5, 0).

SL iter. for diff. games, grid= 101x101, 130 iter.
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BFM for diff. games, grid= 101x101

Figure 6: Test 4: solution computed by FS method (left) and BFM method
(right).

FM and BFM methods vs. Fast Sweeping method

In this paper we used the Fast Sweeping technique to compute the solution
of the classical iterative scheme (11) because it is in general fast and ro-
bust and it is proved to converge to the fixed point. The other advantage

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 20

is that it is not restricted to isotropic front propagation problems like FM
method. Unfortunately it is very difficult to estimate the number of sweep-
ings needed to reach convergence in the case of a general velocity field but
experiments say that FS method is much faster than the classical iterative
method where the nodes are visited in only one fixed order.
Comparing FM/BFM and FS methods is not an easy task because their
behavior is very case-dependent. For example, test 2 was chosen to be
”difficult” for FM/BFM methods because of the strong anisotropy. On the
other hand, the same test is not so difficult for FS method because the
characteristics directions are straight lines to the origin and few sweepings
are enough to compute a good approximation of the viscosity solution. In
test 2 the FS method is faster than BFM method allowing the same L1

distance from the exact solution.
The result is reversed in the test described in Fig. 7. The choice of the veloc-
ity field corresponds to an isotropic front propagation problem in presence
of obstacles. The FS method is slower than BFM method which is slower
than FM method.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

SL−FM

Figure 7: A difficult test for the FS method. The front moves in normal
direction with speed 1. The rectangles represent obstacles.

Conclusions

In this paper we introduced a new fast method to solve Hamilton-Jacobi
equations modeling a monotone front propagation problem, including Hamilton-
Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations related to optimal
control problems and differential games. Although it does not compute ex-
actly the same solution of the standard iterative (fixed point) method based
on the same first order semi-Lagrangian scheme, the new method is able
to compute a good approximation of the viscosity solution preserving the

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 21

order of the scheme. By the experiments, it seems that the computational
cost is close to O(N) as for the FM method, at least for two dimensional
problems.

Acknowledgment

The author wishes to thank Maurizio Falcone, Frederic Bonnans, Hasnaa
Zidani, Olivier Bokanowski, and Nicolas Forcadel for the useful discussions
and suggestions.

References

[1] Bardi, M., and Capuzzo Dolcetta, I. (1997). Optimal Control and Vis-
cosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser,
Boston.

[2] Bardi, M., and Falcone, M. (1990). An approximation scheme for the
minimum time function, SIAM J. Control Optim., 28, pp. 950–965.

[3] Bokanowski, O., Cristiani, E., and Zidani, H. (2008). An efficient data
structure to solve front propagation problems, submitted to Journal of
Scientific Computing.

[4] Carlini, E., Cristiani, E., and Forcadel, N. (2006). A non-monotone
Fast Marching scheme for a Hamilton-Jacobi equation modelling dis-
location dynamics, in A. Bermdez de Castro, D. Gmez, P. Quintela, P.
Salgado (eds.), Numerical Mathematics and Advanced Applications,
Proceedings of ENUMATH 2005 (Santiago de Compostela, Spain, July
2005), pp. 723–731, Springer.

[5] Carlini, E., Falcone, M., Forcadel, N., and Monneau, R. (2008).
Convergence of a Generalized Fast Marching Method for an eikonal
equation with a velocity changing sign, SIAM J. Numer. Anal., 46,
pp. 2920–2952.

[6] Cristiani, E. (2007). Fast Marching and Semi-Lagrangian Methods
for Hamilton-Jacobi Equations with Applications, Ph.D. thesis, Di-
partimento di Metodi e Modelli Matematici per le Scienze Applicate,
SAPIENZA - Università di Roma, Rome, Italy.

[7] Cristiani, E., and Falcone, M. (2008). Numerical solution of the Isaacs
equation for differential games with state constraints, Proceedings of
17th IFAC World Congress (Seoul, Korea, July 6-11, 2008).

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 22

[8] Cristiani, E., and Falcone, M. (2007). Fast semi-Lagrangian schemes
for the Eikonal equation and applications, SIAM J. Numer. Anal., 45,
pp. 1979–2011.

[9] Cristiani, E., and Falcone, M. (2008). A characteristics driven Fast
Marching method for the Eikonal equation, in K. Kunisch, G. Of, O.
Steinbach (eds.), Numerical Mathematics and Advanced Applications
(ENUMATH 2007, Graz, Austria, September 10-14, 2007), pp. 695–
702, Springer Berlin Heidelberg.

[10] Cristiani, E., and Falcone, M., Fully-discrete schemes for the value
function of Pursuit-Evasion games with state constraints, to appear in
Annals of International Society of Dynamic Games, vol. 10, pp. 177–
206.

[11] Falcone, M. (1994). The minimum time problem and its applications to
front propagation, in Motion by Mean Curvature and Related Topics,
A. Visintin and G. Buttazzo, eds., de Gruyter, Berlin, pp. 70–88.

[12] Falcone, M. (2006). Numerical methods for differential games based on
partial differential equations, International Game Theory Review, 8,
pp. 231–272.

[13] Falcone, M., Giorgi, T., and Loreti, P. (1994). Level sets of viscos-
ity solutions: Some applications to fronts and rendez-vous problems,
SIAM J. Appl. Math., 54, pp. 1335–1354.

[14] Gremaud, P. A., and Kuster, C. M. (2006). Computational study of fast
methods for the eikonal equation, SIAM J. Sci. Comput., 27, pp. 1803–
1816.

[15] Hysing, S.-R., and Turek, S., The eikonal equation: numerical effi-
ciency vs. algorithmic complexity on quadrilateral grids, in Proceed-
ings of ALGORITMY 2005, pp. 22–31.

[16] Kim, S. (2001). An O(N) level set method for eikonal equations, SIAM
J. Sci. Comput., 22, pp. 2178–2193.

[17] Kimmel, R., and Sethian, J. A. (1998). Computing geodesic paths on
manifold, Proc. Natl. Acad. Sci. USA, 95, pp. 8431–8435.

[18] Kimmel, R., and Sethian, J. A. (2001). Optimal algorithm for shape
from shading and path planning, J. Math. Imaging Vision, 14, pp. 237–
244.

[19] Prados, E., and Soatto, S., Fast marching method for generic shape
from shading, in Proceedings of VLSM 2005, pp. 320–331.

E. Cristiani, A Fast Marching Method For Hamilton-Jacobi Equations 23

[20] Qian, J., Zhang, Y.-T., and Zhao, H.-K. (2007). A fast sweeping
method for static convex Hamilton-Jacobi equations, J. Sci. Comput.,
31, pp. 237–271.

[21] Sethian, J. A. (1999). Level Set Methods and Fast Marching Meth-
ods. Evolving Interfaces in Computational Geometry, Fluid Mechan-
ics, Computer Vision, and Materials Science, Cambridge University
Press, Cambridge, UK.

[22] Sethian, J. A. (1996). A fast marching level set method for monotoni-
cally advancing fronts, Proc. Natl. Acad. Sci. USA, 93, pp. 1591–1595.

[23] Sethian, J. A., and Vladimirsky, A. (2003). Ordered upwind methods
for static Hamilton–Jacobi equations: Theory and algorithms, SIAM
J. Numer. Anal., 41, pp. 325–363.

[24] Spira, A., and Kimmel, R. (2004). An efficient solution to the eikonal
equation on parametric manifolds, Interfaces Free Bound., 6, pp. 315–
327.

[25] Tsai, Y.-H. R., Cheng, L.-T., Osher, S., and Zhao, H.-K. (2003). Fast
sweeping algorithms for a class of Hamilton–Jacobi equations, SIAM
J. Numer. Anal., 41, pp. 673–694.

[26] Tsitsiklis, J. N. (1995). Efficient algorithms for globally optimal tra-
jectories, IEEE Trans. Automat. Control, 40, pp. 1528–1538.

[27] Vladimirsky, A. (2006). Static PDEs for time-dependent control prob-
lems, Interfaces and Free Boundaries, 8, pp. 281–300.

