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Abstract
We deal with the approximation of a generalized Pursuit-Evasion game with

state constraints. Our approach is based on the Dynamic Programming principle
and on the characterization of the lower value v of the game via the Isaacs
equation. Our main result is the convergence of the fully-discrete scheme for
Pursuit-Evasion games under continuity assumptions on v and some geometric
assumptions on the dynamics and on the set of constraints Ω. We also analyze
the Tag-Chase game in a bounded convex domain when the two players have
the same velocity and we prove that in the constrained case the time of capture
is finite. Some hints to improve the efficiency of the algorithm on serial and
parallel machines will be also given. An extensive numerical section will show
the accuracy of our method for the approximation of the value function v and of
the corresponding optimal trajectories in a number of different configurations.

Key words. Differential games, pursuit-evasion games, state constraints,
Isaacs equation, fully-discrete scheme, feedback controls, Tag-Chase game,
parallel algorithms.

AMS Subject Classifications. Primary 65M12; Secondary 49N70, 49L25.

1 Introduction

In this paper, we present and analyze a numerical approximation scheme for 2-
player Pursuit-Evasion games with state constraints. The scheme is based on the
dynamic programming approach and the convergence results are obtained in the
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framework of viscosity solutions (see the survey papers [3,7,17] for a general
introduction to this topic without constraints).

Our main result shows that the solution of the fully-discrete problem converges
to the time-discrete value function as the mesh size Δx goes to zero provided a
technical “consistency" assumption on the triangulation is satisfied. Moreover, an
a priori error bound on that approximation is proved in Theorem 3.1 and a very
easy sufficient condition guaranteeing consistency is shown (Corollary 3.3). The
proof of the main result is obtained by extending to games a technique presented
in [18] for the minimum time problem without state constraints and adapting the
approach for state-constrained control problems presented in [10].

Note that the convergence of the fully-discrete solution to the solution of the
continuous problem in the free (i.e., unconstrained) case is proved in [6], but this
result cannot be directly extended to the constrained case. In [10], a convergence
result is proved for constrained control problems, but it strictly relies on the fact
that the time-discrete value function is continuous so we cannot apply the same
ideas here.
In order to prove convergence of the approximate solution of the fully-discrete
scheme to the value function, we have coupled our result with the convergence
result obtained by Bardi et al. [8] (see also [21,20]) in the framework of Pursuit-
Evasion games. This allows to conclude that, under suitable assumptions, the
convergence of the fully-discrete solution converge to the solution of the continuous
problem when the time and space steps, Δt and Δx, go to zero (although a precise
estimate of the order of convergence is still missing).

It should be noted that very few results on constrained differential games are
available although several interesting problems with state constraints have been
studied in the classical books by Isaacs [19] and Breakwell [9]. The aim of those
contributions is mainly to analyze the games under study in order to determine
directly the optimal strategies for the players avoiding in this way the Isaacs equa-
tion. The main theoretical contributions to the characterization of the value func-
tion for state constrained problems are, by our knowledge, the papers by Alziary
de Roquefort [1], Bardi et al. [8], and Cardaliaguet et al. [12]. From the numer-
ical point of view, the list of contributions is even shorter. The first examples of
computed optimal trajectories for Pursuit-Evasion games appeared in the work by
Alziary de Roquefort [2]. In Bardi et al. [6], there are some interesting tests in
Ω ⊂ R

2 with state constraints and discontinuous value function. In [4], the effect
of the boundary conditions for the free problem in R

4 is studied. In the paper
Cardaliaguet et al. [11], a modified viability kernel algorithm (see [13] for more
details on this approach) is presented and a convergence proof for that approxi-
mation scheme is given. Finally, let us also mention the paper of Pesch et al. [22]
where the optimal trajectories are computed by means of neural networks (again
avoiding the solution of the Isaacs equation).

Another contribution of this paper is the analysis of the constrained Tag-Chase
game where the two players run one after the other in a bounded convex domain
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with the same velocity. In this case, the value function is discontinuous and most of
the theoretical results we know for the Tag-Chase game do not hold. We prove that
the time of capture is finite if the capture occurs whenever the distance between the
Pursuer and the Evader is less than a positive parameter ε (the radius of capture).
This shows that the presence of constraints can change dramatically the result of
the game. In fact, in the unconstrained Tag-Chase game where both the players
have the same velocity, the Evader always wins (and the time of capture is +∞).
The paper is organized as follows. In Sec. 2, we set up our problem, introduce
the notations and present our approximation scheme. Section 3 is devoted to the
convergence analysis, we prove first some properties of the discrete value functions
vh and vk

h corresponding, respectively, to the solutions of the time-discrete and
fully-discrete schemes. The final convergence result is obtained coupling the error
estimate of Theorem 3.1 with the results in [8]. In Sec. 4, we deal with the Tag-
Chase game in a convex domain showing that this problem has a finite capture
time also when the two players have the same maximal velocity. Section 5 presents
some hints for the construction of the algorithms and, in particular, it deals with two
features which allow to reduce the computational cost for the solution of the Isaacs
equation: a high-dimensional interpolation technique and the symmetry properties
of the Tag-Chase game played in a square domain. Finally, Sec. 6 presents several
tests for different geometric configurations of the state constraints (convex and
non-convex) as well as for various choices of the relative velocities of the two
players. We analyze the results in terms of the value function v but also in terms
of the optimal trajectories that one can compute using v.

2 The fully-discrete approximation scheme

Let us start introducing the problem and our notations. The system describing the
dynamics is {

ẏ(t) = f(y(t), a(t), b(t)) , t > 0
y(0) = x ,

(1)

wherey(t) ∈ R
2n is the state of the system,a(·) ∈ A and b(·) ∈ B are, respectively,

the controls of the first and the second player, A and B being the sets of admissible
strategies defined as

A = {a(·) : [0,+∞) → A, measurable} ,

B = {b(·) : [0,+∞) → B, measurable} ,

and A and B are given compact sets of R
m. We will always assume that⎧⎨⎩

f : R
2n ×A×B → R

2n is continuous w.r. to all the variables and
there exists L > 0 such that |f(y1, a, b) − f(y2, a, b)| ≤ L|y1 − y2|
for all y1, y2 ∈ R

2n, a ∈ A, b ∈ B.
(2)
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We will denote the solution of (1) by y(t;x, a(·), b(·)).
A target set T ⊂ R

2n is given and it is assumed to be closed. The first player,
called the Pursuer and denoted by P , wants to drive the system to T . The second
player, called the Evader and denoted by E, wants to drive the system away.

We deal with the natural extension of the minimum time problem, so we define
the payoff of the game as the first (if any) time of arrival T (x) on the target T for
the trajectory solution of (1) starting at x. Note that, as usual, we set T (x) = +∞
if the trajectory will not reach the target. The two players are opponents since the
first player wants to minimize the payoff associated to the solution of the system
whereas the second player wants to maximize it.

From now on, we restrict our analysis to Pursuit-Evasion games although some
results are still valid in a more general context. We denote the coordinate of the
space by x = (xP , xE) where xP , xE ∈ R

n. Each player can control only his own
dynamics, i.e., f has the form f(x, a, b) =

(
fP (xP , a), fE(xE , b)

)
. The state of

the system is y(t) =
(
yP (t), yE(t)

)
and a typical target has the form

T = {(xP , xE) ∈ R
2n : |xP − xE | ≤ ε} , ε ≥ 0

so in the unconstrained case the target is unbounded. As we said in the Introduc-
tion, we want to construct a numerical approximation for Pursuit-Evasion games
with state constraints. This means that player P has to steer the system to the tar-
get satisfying the constraint yP (t) ∈ Ω1 for every t whereas playerE must satisfy
yE(t) ∈ Ω2 for every t, where Ω1,Ω2 are given bounded sets. The whole problem
is set in Ω ⊂ R

2n where Ω := Ω1 × Ω2. Note that one player cannot force the
other to respect or ignore the state constraints just because every player can affect
only his dynamics and he is completely responsible for his strategy/trajectory. In
the constrained game it is natural to replace T with T ∩ Ω.

The analysis of the continuous model with state constraints via dynamic pro-
gramming techniques which is the basis for our approximation can be found in [8].
Let us start giving the time-discrete and the corresponding fully-discrete version
of the differential game with state constraints. We will consider a discrete version
of the dynamics based on the Euler scheme, namely{

yn+1 = yn + hf(yn, an, bn)
y0 = x ,

where h = Δt is a positive time step and we denote by y(n;x, {an}, {bn}) its
solution at time nh corresponding to the initial condition x = (xP , xE) and to
the discrete strategies {an}, {bn}. The state constraints obviously require that
y(n;x, {an}, {bn}) ∈ Ω for all n ∈ N.
We define the constrained admissible strategies for each player

Ax := {a(·) ∈ A : yP (t;x, a(·)) ∈ Ω1 , for all t ≥ 0}
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Bx := {b(·) ∈ B : yE(t;x, b(·)) ∈ Ω2 , for all t ≥ 0}
and their time-discrete version

Ah
x := {{an} : an ∈ A and yP (n;x, {an}) ∈ Ω1 , for all n ∈ N}

Bh
x := {{bn} : bn ∈ B and yE(n;x, {bn}) ∈ Ω2 , for all n ∈ N}.

Note that the constrained strategies now depend on x and on the state constraints.
We will always assume that Ax 	= ∅, Bx 	= ∅, Ah

x 	= ∅, and Bh
x 	= ∅ for all x ∈ Ω

and h sufficiently small.
In the same way, we have to define the sets of admissible controls for every

point x ∈ Ω. Let us start with the continuous problem. Following [20,21], we will
select the subsets of admissible controls, denoted by A(y) and B(y), for every
y = (yP , yE) ∈ Ω \ T ,

A(y) = {a ∈ A : ∃ r > 0 such that yP (t; y′
P , a) ∈ Ω1 for t ∈ [0, r] and

y′
P ∈ B(yP , r) ∩ Ω1}, (3)

B(y) = {b ∈ B : ∃ r > 0 such that yE(t; y′
E , b) ∈ Ω2 for t ∈ [0, r], and

y′
E ∈ B(yE , r) ∩ Ω2}. (4)

For the time-discrete dynamics we define an analogue of subsets ofA(y) andB(y)
as follows:

Ah(y) := {a ∈ A : yP + hfP (yP , a) ∈ Ω1} , y ∈ Ω \ T , (5)

Bh(y) := {b ∈ B : yE + hfE(yE , b) ∈ Ω2} , y ∈ Ω \ T . (6)

The meaning of the above definitions is very clear: in order to guarantee that
his trajectory satisfies his own state constraints over a time interval h, player P
(respectively, player E) has to choose his control in Ah(y) (respectively, Bh(y)).
These subsets describe at every point y ∈ Ω \ T the “allowed directions" for each
player, naturally they depend also on h, the dynamics and the constraints. Note
that Ah(y) ≡ A (respectively, Bh(y) ≡ B) in the unconstrained case.
We will also assume that

∃ h0 > 0 s.t. Ah(x) 	= ∅ and Bh(x) 	= ∅ for all (h, x) ∈ (0, h0] × Ω . (7)

Definition 2.1. A discrete strategy for the first player is a map αx : Bh
x → Ah

x.
It is nonanticipating if αx ∈ Γh

x, where

Γh
x := {αx : Bh

x → Ah
x : bn = b̃n for all n ≤ n′ implies

αx[{bk}]n = αx[{b̃k}]n for all n ≤ n′}. (8)
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Let us define the reachable set as the set of all points from which the system can
reach the target

Rh := {x ∈ R
n : for all {bn} ∈ Bh

x there exists αx ∈ Γh
x and n̄ ∈ N

such that y(n̄;x, αx[{bn}], {bn}) ∈ T }. (9)

Then we define

nh(x, {an}, {bn}) :=
{

min{n ∈ N : y(n;x, {an}, {bn}) ∈ T } x ∈ Rh

+∞ x /∈ Rh .

We will consider for our approximation the discrete lower value of the game, which
is

Th(x) := inf
αx∈Γh

x

sup
{bn}∈Bh

x

hnh(x, αx[{bn}], {bn})

and its Kružkov transform

vh(x) := 1 − e−Th(x) , x ∈ Ω. (10)

Note that a similar construction can be done for the upper value of the game.
The Dynamic Programming Principle (DPP) for Pursuit-Evasion games with state
constraints is proved in [8] which also gives a characterization of the lower and
upper value of the game in terms of the Isaacs equation. From the discrete version
of the DPP (see [8]), we can conclude that the time-discrete value function vh is
the unique bounded solution of{

vh(x) = max
b∈Bh(x)

min
a∈Ah(x)

{βvh(x+ hf(x, a, b))} + 1 − β x ∈ Ω\T

vh(x) = 0 x ∈ T ∩ Ω
(HJIh−Ω)

where β := e−h and themaxmin is obviously computed on the sets of admissible
controls for the constrained game. In order to achieve the fully-discrete equation we
build a regular triangulation ofΩdenoting byX the set of its nodesxi, i = 1, . . . , N
and by S the set of simplices Sj , j = 1, . . . , L. V (Sj) will denote the set of the
vertices of a simplex Sj and the space discretization step will be denoted by k
where k := maxj{diam(Sj)}. Let us define D ≡ (Ω\T ) ∩X .
The fully-discrete approximation scheme for the constrained case is⎧⎪⎪⎪⎨⎪⎪⎪⎩
vk

h(xi) = max
b∈Bh(xi)

min
a∈Ah(xi)

{
βvk

h(xi + hf(xi, a, b))
}

+ 1 − β xi ∈ D

vk
h(xi) = 0 xi ∈ T ∩X

vk
h(x) =

∑
j λj(x)vk

h(xj) , 0 ≤ λj(x) ≤ 1 ,
∑

j λj(x) = 1 x ∈ Ω .

(HJIkh−Ω)
As in the unconstrained problem, the choice of linear interpolation is not an obli-
gation and it was made here just to simplify the presentation. Let us denote byW k



Fully-Discrete Schemes for Pursuit-Evasion Games with State Constraints 183

the set

W k :=
{
w ∈ C(Ω) : ∇w(x)=constant for all x ∈ Sj , j = 1, . . . , L

}
.

The proof of the following theorem can be obtained by simple adaptations of the
standard proof for the free fully-discrete scheme (see, e.g., [6]).

Theorem 2.2. Equation (HJIkh−Ω) has a unique solution vk
h ∈ W k such that

vk
h : Ω → [0, 1].

Sketch of the proof. The right-hand side of the first equation is (HJIkh−Ω) defines
a map F : R

N → R
N where N is the cardinality of the set of nodes in the trian-

gulation. The proof relies on the fact that F is a contraction map so there exists a
unique fixed point V ∗ and vk

h(xi) = V ∗
i , i = 1, . . . , N . �

3 Convergence of the fully-discrete numerical scheme

The convergence of the fully-discrete scheme will be based on two ingredients.
The first is an a priori bound for vk

h − vh which will be obtained studying the
properties of vh on a family of approximate “reachable sets". This bound is proved
for a general dynamics f and does not depend on the regularity of v. Then, we
couple this bound with the convergence result in [8] where they prove that vh

converges to v uniformly in Ω \ T .
Let us define R0 := T and

Rn :=

{
x ∈ Ω\

n−1⋃
j=0

Rj : for all b ∈ Bh(x) there exists âx(b) ∈ Ah(x)

such that x+ hf(x, âx(b), b) ∈ Rn−1

}
, n ≥ 1. (11)

See [18] for an analogous definition in the framework of the minimum time prob-
lem.

Remark 3.1. By definition, the shape of the sets {Rn}n∈N strictly depends on
f , Ω, A and B. Moreover, the following properties hold true:

1. Rn ∩ Rm = ∅ for all n 	= m;
2. If Rp = ∅ for some p ∈ N, then Rq = ∅ for any q ≥ p;
3. The sets {Rn}n∈N are the level sets of vh and vh has jump discontinuities on

the boundary of each of them.

In the sequel will always assume that

Ω =
∞⋃

j=0

Rj . (12)
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Note that (12) can be interpreted as a sort of small time controllability assumption
and that it is not really restrictive since if there exists a point x ∈ Ω\

⋃
j Rj this

means that player P cannot win the game from that point (i.e., he cannot drive the
system to the target) and then vh(x) = 1.

We introduce two important assumptions on the triangulation. Let S ∈ S be a
simplex, the first assumption is (see Fig. 1):

Figure 1: A simplex S crossing Rn, Rn−1, and Rn+1.

x ∈ S ∩ Rn ⇒ V (S) ⊂ Rn−1 ∪ Rn ∪ Rn+1. (13)

It means that the space discretization cannot be too coarse with respect to the time
discretization. The second assumption is the ”consistency” of the triangulation
(see Fig. 1).

Definition 3.2. We say that a triangulation is ”consistent” if S∩Rn 	= ∅ implies
that there exists at least one vertex xi ∈ V (S) such that xi ∈ Rn.

The above assumption requires that every simplex of the triangulation cannot cross
a level set Rn without having a vertex in it and, as we will see, is crucial for the
convergence of the scheme. This condition will be always satisfied fork sufficiently
small as we will see in Corollary 3.4. Let vh and vk

h denote, respectively, the
solution of (HJIh−Ω) and (HJIkh−Ω). We now state the main result of the paper.

Theorem 3.3. Let Ω be an open bounded set. Let (2), (12), (13) hold true and
let the triangulation be ”consistent”. Then, for n ≥ 1:

a) vh(x) ≤ vh(y) , for any x ∈
n⋃

j=0
Rj , for any y ∈ Ω\

n⋃
j=0

Rj ;
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b) vh(x) = 1 − e−nh , for any x ∈ Rn;

c) vk
h(x) = 1 − e−nh +O(k)

n∑
j=0

e−jh for any x ∈ Rn;

d) There exists a constant C > 0 such that

|vh(x) − vk
h(x)| ≤ Ck

1 − e−h
, for any x ∈ Rn.

Proof. a) By induction. For n = 0 the statement is true since

0 = vh(x) ≤ vh(y) for all x ∈ T , for all y ∈ Ω\T .

Let the statement be true up to n− 1. Suppose by contradiction that

there exists x ∈
n⋃

j=0

Rj and y ∈ Ω\
n⋃

j=0

Rj such that vh(y) < vh(x).

Therefore, there exists a (discrete) trajectory that starts from Ω\
n⋃

j=0
Rj and reaches

the target in less then n time steps passing through Rn. The contradiction follows
by the definition of Rn.
b) By the definition of Rn, for any x ∈ Rn we can find n+ 1 points x(q), q =

0, . . . , n such that x(0) = x and x(q) ∈ Rn−q. Introducing for simplicity the
notations aq := ax(q) and bq := bx(q) , we can write the sequence of the points x(q)

more explicitly as

x(q+1) = x(q) + hf(x(q), âq(b∗q), b
∗
q) ,

where we use the ∗ to indicate the optimal choice. As a consequence, the state of
the system can reach the target in n steps and then vh(x) ≤ 1− e−nh. Suppose by
contradiction that vh(x) < 1−e−nh. As in b), this means that the state has reached
the target starting at x in less then n time steps but this is impossible since x ∈ Rn.
c) By construction we have vk

h(xi) = 0 for all xi ∈ R0 ∩X . We now consider a
generic point x ∈ R0 and letS be the simplex containing x. Since the triangulation
is ”consistent”, S must have at least a vertex xi0 ∈ R0 and then vk

h(x) = O(k)
for all x ∈ R0 since vk

h ∈ W k. This implies, for all xi ∈ R1 ∩X ,

vk
h(xi) = βvk

h(xi + hf(xi, a
∗, b∗)) + 1 − β = βO(k) + 1 − β ,

since xi + hf(xi, a
∗, b∗) ∈ R0. We now consider a generic point x ∈ R1. By the

same arguments there exists at least one vertex xi1 ∈ R1 such that

vk
h(x) = vk

h(xi1) +O(k) = βO(k) + 1 − β +O(k) = 1 − β + (1 + β)O(k).

For any xi ∈ R2 ∩X ,

vk
h(xi) = β(1 − β + (1 + β)O(k)) + 1 − β = 1 − β2 + (β + β2)O(k) ,
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and, for any x ∈ R2 it exists xi2 ∈ R2 such that

vk
h(x) = vk

h(xi2) +O(k) = 1 − β2 + (1 + β + β2)O(k).

Continuing by recursion we obtain, for any x ∈ Rn

vk
h(x) = 1 − βn +O(k)

n∑
j=0

βj .

d) By b) and c) there exists a positive constant C1 such that

|vh(x) − vk
h(x)| = C1k

n∑
j=0

βj ≤ C1k

1 − β
=

C1k

1 − e−h
.

�

Corollary 3.4. Let Ω be an open-bounded set. Let (2), (12) hold true. Moreover
assume that

min
x,a,b

|f(x, a, b)| ≥ f0 > 0 and 0 < k ≤ f0h. (14)

Then, for k → 0+, vk
h converges to vh uniformly in Ω for any h > 0 fixed.

Proof. First note that condition (14) is a sufficient condition for (13) and for the
consistency of the triangulation. Therefore we can apply Theorem 3.3 and we
easily conclude. �

Remark 3.5. The result in the above corollary does not rely on the fact that we
use a split dynamic f = (fP , fE) but we notice that it is not clear how to get the
Hamilton-Jacobi-Isaacs equation associated to the problem in the case of a general
dynamics with state constraints. In [21] there is an attempt in this direction but
unfortunately the case considered there does not include Pursuit-Evasion games.

In order to obtain uniform convergence of vk
h to the solution of the continuous

problem when h and k tend to 0+, we couple our result with those in [8] which
are restricted to Pursuit-Evasion games. Let us denote by v the value function for
the continuous problem as defined in [8]. In order to provide sufficient conditions
for the continuity of v, we need to introduce further assumptions. Whenever we
say that ω : [0,+∞) → [0,+∞) is a modulus we mean that ω is nondecreasing,
it is continuous at zero, and ω(0) = 0. The first assumption is about the behavior
of the value function v near the target T .

There is a modulus ω such that v(x) ≤ ω(d(x, T )) for all x ∈ Ω (C1)
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where d(x, T ) = infz∈T {|x− z|}.
The second is a small time controllability assumption for the Pursuer.⎧⎨⎩

There is ωP (·, R) modulus for all R > 0 such that for all
w1, w2 ∈ Ω1 there are a(·) ∈ Aw1 and a time tw1,w2 satisfying
yP (tw1,w2 ;w1, a(·)) = w2 and 0 ≤ tw1,w2 ≤ ωP (|w1 − w2|, |w2|).

(C2)

The third is a small time controllability assumption for the Evader.⎧⎨⎩
There is ωE(·, R) modulus for all R > 0 such that for all
z1, z2 ∈ Ω2 there are b(·) ∈ Bz1 and a time tz1,z2 satisfying
yE(tz1,z2 ; z1, b(·)) = z2 and 0 ≤ tz1,z2 ≤ ωE(|z1 − z2|, |z2|).

(C3)

The proof of the next theorem can be found in [8].

Theorem 3.6. Assume that (2), (C1), (C2), and (C3) hold. Then, the value func-
tion v is continuous in Ω1 × Ω2 .

Let us introduce the following regularity hypothesis on the boundary of T .{
For each x ∈ ∂T there are r, θ > 0 and Ξ ∈ R

2n such that⋃
0<t<r

B(x′ + tΞ, tθ) ⊂ Ω\T for any x′ ∈ B(x, r) ∩ Ω\T . (15)

Note that a comparison principle for sub- and super-solutions for the same Hamil-
tonian is proved in [8] under additional regularity assumptions on ∂(Ω\T ). More
precisely, the assumptions needed are the uniform interior cone conditions for Ω1,
Ω2, and T .
We have the following

Theorem 3.7. Let Ω be an open-bounded set. Let (2), (7), (C1), (C2), (C3), and
(15) hold true. Finally, assume that

fP (xP , A(x)) and fE(xE , B(x)) are convex sets. (16)

Then, for h → 0+, vh converges to v uniformly in Ω.

Proof. The assumption (16) guarantees that the value function vh for the time-
discrete problem defined in (10) coincides with that used in [8]. Moreover, assump-
tions of Theorem 3.6 are fulfilled so that v ∈ C(Ω). Then, the proof follows by
Theorem 4.2 in [8]. �

Coupling the previous results we can prove our convergence result for the
approximation of Pursuit-Evasion games.

Corollary 3.8. Let the assumptions of Corollary 3.4 and Theorem 3.7 hold true.
Moreover, assume that k = O(h1+α), forα > 0. Then vk

h converges to v uniformly
in Ω for h tends to 0+.
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Proof. Since 1 − e−h = O(h) for h tending to 0+ we have for any x ∈ Ω:

|vk
h(x)−v(x)| ≤ |vk

h(x)−vh(x)|+ |vh(x)−v(x)| ≤ O(hα)+‖vh(x)−v(x)‖∞.

�

As we said in the Introduction, a convergence theorem has been proved in [11,12]
for a different approximation scheme based on viability theory. The approach is
different in several respects. The first is that the techniques used in the proof are
based on the characterization of the epigraph of the value function of the game
in terms of a Discriminating Kernel for a suitable problem. By this technique
the authors can easily deal with semicontinuous Hamiltonians and construct a
discrete Discriminating Kernel algorithm. This technique is based on an external
approximation of the epigraph of the value function via a sequence of closed sets
Dp, p ∈ N (see [13] p. 224). This construction is rather expensive for games and
can be hard to pursue particularly in high-dimension even if one can try to localize
the algorithm near the boundary of the Discriminating Kernel (i.e., nearby the
graph of the value function).

4 The Tag-Chase game with state constraints

The Tag-Chase game is a particular case of Pursuit-Evasion games. We consider
two boys, P and E, which run one after the other in the same 2-dimensional

domain, so that the game is set in Ω = Ω
2
1 ⊂ R

4 where Ω1 is an open-bounded
set of R

2. We denote by (xP , xE) the coordinates of Ω where xP , xE ∈ Ω1. P
(respectively, E) can run in every direction with velocity VP (respectively, VE) so
that the dynamics of the game is{

ẋP = VP a a ∈ B2(0, 1)
ẋE = VE b b ∈ B2(0, 1) ,

where B2(0, 1) = {z ∈ R
2 : |z| ≤ 1}. The case VP > VE is completely studied

in [1,2]. The value function T = − ln(1 − v), which represents the capture time,
is continuous and bounded in its domain of definition. Moreover, the convergence
result we obtained in Sec. 3 applies to this case.

On the other hand, the most interesting case is certainly VP = VE , i.e., when
the players have the same dynamics and no advantage is given to any of them. In
this case it is easily seen that the value function T is discontinuous (at least on
∂T ) and then all theoretical results based on the continuity of the value function
does not hold.

In this section we will give an answer to the following question: ”if VP = VE ,
is the capture time finite?”.

If the Tag-Chase game is played without constraints on the state and both players
play optimally, it is immediately seen that the distance between P and E remains
constant and then capture never happens (the optimal strategy for E is to move
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for ever as fast as he can along the line joining P and E in the opposite direction
with respect to the position of P ). On the contrary, if the state is constrained in a
bounded domain, such a restriction seems to play a key role against the Evader, as
the following proposition shows.

Proposition 4.1. Let Ω1 be open and bounded. Moreover, let the target be

T = {(xP , xE) ∈ Ω : |xP − xE | ≤ ε} , ε ≥ 0. (17)

Then,

1. If VP > VE , then the capture time tc = T (xP , xE)=− ln(1 − v(xP , xE)) is
finite and bounded by

tc ≤ |xP − xE |
VP − VE

.

2. If VP = VE , ε 	= 0 and Ω1 is convex then the capture time tc is finite.

Proof.

1. This first part of the proof can be found in [1]. We fix a strategy for P and
leave E free to decide his optimal strategy. First, P reaches the starting point
of E covering the distance |xP − xE | and then he follows the E’s trace. The
conclusion follows by elementary computations.

2. The basic idea of the proof is the same of the previous case but we have to
change the strategy for the Pursuer in order to have a finite upper bound.
P runs after E always along the line joining P and E (P can do it by the
convexity of Ω1) while E chooses his own optimal trajectory as before. We
can characterize the strategy of E by a function θ(t) : [0,+∞) → [0, 2π)
which represents at every time the smallest angle between the velocity vector
of E and the line joining P and E (see Fig. 2). Let us denote by dPE(t) the

θ(t)

P

E

Figure 2: Trajectories of P and E in Proof of Proposition 4.1.

distance between P and E at time t. We claim that, for any fixed t,

θ(t) 	= 0 ⇒ d′
PE(t) < 0 (18)
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where ′ = d
dt . Due to the state constraints, θ(t) cannot be equal to 0 for a time

interval longer then diag(Ω1)/VP and after that must be different from 0 for
a finite time interval because E must change his trajectory at least when he
touches ∂Ω1. Therefore, if (18) holds then dPE(t) → 0 for t → ∞ and then
for any ε > 0 there exists a time t̄ such that dPE(t̄) ≤ ε (the capture occurs).
In order to prove (18), let us define the two vectors E(t) and P (t) which are,
respectively, the position of P and E at time t and the vector r(t) := E(t) −
P (t). By definition, we have dPE(t) = |r(t)|. Without loss of generality,
suppose that at time t, P (t) is in the origin and E(t) lies on the x-axis and

x

y

1P P’ E

E’

θ(t)

P’

r’

Figure 3: Vectors P , P ′, E, E′, and r′ as in Proposition 4.1.

that VP = VE = 1 (see Fig. 3).
Then

P ′(t) = (1, 0) and
r(t)
|r(t)| = (1, 0).

Moreover, by construction we have

E′(t) = (cos θ(t), sin θ(t)) and r′(t) = E′(t) − P ′(t).

It follows that r′(t) = (cos θ(t) − 1, sin θ(t)) and

d′
PE(t) =

r(t)
|r(t)| · r′(t) = cos θ(t) − 1 (19)

so that (18) holds. �

5 Some hints for the algorithm

In this section we give some hints for an efficient implementation of the algorithm
for the solution of differential games. The main goal is to reduce the computational
cost since this is a crucial step toward applications. The first hint deals with a
fast way to compute the term vk

h(xi + hf(xi, a, b)) in high-dimensional spaces.
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In fact, the linear interpolation used in the definition of the fixed point iteration is
appealing from the theoretical point of view but not very efficient since it would
require the solution of a linear system of size 2n + 1 for every xi, a, and b. The
procedure we suggest solves this problem by a sequence of linear interpolations in
1-dimension. The second hint exploits the natural symmetry in the game problem
whenever it is played in a square domain in order to reduce (by a factor 2 in two
dimensions and 4 in four dimensions) the domain where the solution is actually
computed. Both procedures have shown to be very efficient and have contributed
to a dramatic reduction of the CPU time.

5.1 Interpolation in high-dimensions

It is important to note that the semi-Lagrangian scheme (HJIkh−Ω) requires that at
every iteration, at every node and every a and b, the value vk

h(xi + hf(xi, a, b))
is computed and this computation needs an interpolation of the values of vk

h at the
nodes. [14] extensively analyzed a fast and efficient interpolation method in high-
dimension suitable to our purposes. We recall briefly this method giving a precise
error estimate.
Consider a point x = (x1, . . . , xn) ∈ R

n and the cell of the grid which contains
it (see Fig. 4 for an example in 3D). Suppose that a function f is known in the 2n

vertexes of the cell and we want to compute the value f(x) by linear interpolation.
The basic idea is to project the point x onto lower and lower dimensional subspaces
until dimension 1 is reached. More precisely, choose a dimension (in Fig. 4 we
chose x1) and project the point x in that dimension on both sides of the cell finding
the pointsP 1

1 andP 1
2 . Then, choose a direction different from the first one (we chose

x2) and project the points P 1
1 and P 1

2 on the sides of the cell finding the points P 2
1 ,

P 2
2 , P 2

3 , and P 2
4 . Iterate the projection procedure 2n+1 − 2 times in the same way

until all vertexes of the cell are reached. At this stage a tree structure containing
all points P j

i , i = 1, . . . , 2n , j = 1, . . . , n is computed from top to bottom.
Now evaluate by unidimensional linear interpolations the values of f at the points
P j

i , i = 1, . . . , 2n , j = 1, . . . , n in the reverse order with respect to that used
to find them (from bottom to top). This procedure leads to an approximate value
of f(x) obtained by 2n − 1 unidimensional linear interpolations. It is interesting
to give a precise error estimates of this first-order interpolation method.

Theorem 5.1. Let R
n ⊃ Q := [a1, b1] × . . .× [an, bn] and x = (x1, . . . , xn).

Assume f ∈ C2(Q; R) and let q(x), x ∈ Q be the approximate value of f(x)
obtained by the n-dimensional linear interpolation described above.
Then, the error E(x) := f(x) − q(x) is bounded by

|E(x)| ≤
n∑

i=1

Δ2
i

8
Mi , for all x ∈ Q ,

where Mi = max
x∈Q

|∂2f(x)
∂x2

i
| and Δi = bi − ai.
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Figure 4: Example in 3D.

Proof. The proof is easily obtained by induction using the basic theory of linear
interpolation. The interested reader can find the complete proof in [15]. �

5.2 Reducing the size of the problem

If the dimension of the space is greater than 4, the algorithm has a high computa-
tional cost. As already noted in [2,22], due to the state constraints it is not possible
in general to use reduced coordinates x̃ = xP − xE unless the problem has a spe-
cial structure. In fact, using reduced coordinates we loose every information about
the real positions of the two players, so that we cannot detect when they touch the
boundary of the domain (and then change the dynamics consequently). Note that
if we consider the 2-player Tag-Chase game constrained in a circle (see for exam-
ple [9]), the problem can be described by three coordinates instead of four since
the problem is invariant with respect to the rotation of the domain. Obviously, this
is not true if the game’s field is a square as in the case of the numerical tests we
carry on in this paper.

Although it is not always possible to describe the game in a reduced space
due to the state constraints, we can simplify the computation taking into account
the symmetries of the problem, if any. We explain our technique first in the 1-
dimensional case and then in the 2-dimensional case. From now on we denote by
n the number of grid nodes in each dimension.

Unidimensional Tag-Chase game
Assume that each player can move along a line in the interval [−x0, x0]2, then the
game is set in the square [−x0, x0]2.

In Fig. 5 we show the level sets of the solution T = − log(1 − v) in the case
VP = 2, VE = 1, x0 = 2 and an optimal trajectory starting from (−1.5, 0). It is
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Figure 5: Level sets of the solution T = − log(1 − v) for VP = 2, VE = 1.

easy to see that

v(xP , xE) = v(−xP ,−xE) for all xP , xE ∈ [−x0, x0]

so that we can recover the entire solution either from the triangular sector
SNW = {(xP , xE) : xP ≤ xE} or from the rectangular sectorSW = {(xP , xE) :
xP ≤ 0}. This corresponds to the fact that it is sufficient to compute the solution
for all the initial positions of P and E in which P is on the left of E or P is in
the left side of the domain [−x0, x0] (see Fig. 6). There is an important difference

Figure 6: Two initial positions which correspond to the same value for v.

between the two approaches. In fact, the target T = {(xP , xE) : xP = xE} is
entirely contained in SNW but not in SW . Moreover, since the target divides the
domain Ω = [−x0, x0]2 in two parts and no characteristics can pass from one part
to the other, all the optimal trajectories starting from SNW remains in SNW . This
is clearly not true for SW . As a consequence, if we compute the solution only in
SW this will be not correct because not all the usable part of the target is visible
from the domain.

Unfortunately, the domain SNW has not a correspondence in the two-
dimensional Tag-Chase game. In fact, the target T does not divide the entire space
Ω = ([−x0, x0] × [−x0, x0])2 into two parts since the co-dimension of the target
is strictly greater than 1. On the contrary, we will see that the domain SW has a
natural generalization in the two-dimensional case.
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For this reason it is preferable to localize the computation only inSW . In order to
do this we adopt the following idea. First of all we choosen even. Then we compute
the approximation of v at the node corresponding to the indices (i, j), for i =
1, . . . , n/2, j = 1, . . . , n via the numerical scheme (HJIkh−Ω) (note that now i is the
index corresponding to the position of the player P so is a column index whereas
j is a row index). After every iteration we copy the line (i = n/2, j = 1 : n) in
(i = n/2 + 1, j = n : 1) as a sort of ”periodic boundary condition” for SW . In
this way the information coming from the south-western part of the target can
substitute the missing information needed by the north-western part of the domain.

When the algorithm reached the convergence we can easily recover the solution
on all over the domain Ω.

Two-dimensional Tag-Chase game
As we did in the unidimensional case, we want to use the symmetries of the
problem to avoid useless computation.

We assume that each player can move in a square so that the game is set in a four-
dimensional hypercube. The positions of P and E will be denoted, respectively,
by (xP , yP ) and (xE , yE). In this case we have more than one symmetry. In fact,
it easy to check that the following three inequalities hold (see Fig. 7):

Figure 7: Four initial positions which correspond to the same value for v.

v(xP , yP , xE , yE) = v(−xP ,−yP ,−xE ,−yE) (20)

v(xP , yP , xE , yE) = v(−xP , yP ,−xE , yE) (21)

v(xP , yP , xE , yE) = v(xP ,−yP , xE ,−yE). (22)

We note that once we take into account the symmetry (20) we took into account
automatically the symmetry in (21).
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The following nested for’s take into account only the symmetry (22) and they
allow to compute correctly the whole 4D matrix containing the grid nodes.

for i=1:n
for j=1:n/2

for k=1:n
for l=1:n

{v(i,j,k,l)=SLscheme(...);
v(i,n-j+1,k,n-l+1)=v(i,j,k,l);}

Now we are ready to make use of symmetry (20) by means of the tech-
nique introduce for the unidimensional Tag-Chase game. We compute just
half matrix corresponding to the indexes i = 1, . . . , n/2 and after every iter-
ation we copy the submatrix (i = n/2, j = 1 : n, k = 1 : n, l = 1 : n) in
(i = n/2 + 1, j = n : 1, k = n : 1, l = n : 1) as a boundary condition.

At the end of computation we easily recover the solution in the whole domain.

Remark 5.2. We ran a Fast Sweeping [23] version of the one-dimensional Tag-
Chase game. We noticed that no improvements about the number of iterations
is achieved. This is probably due to the presence of state constraints so that the
information first propagates from the target and then it comes back after hitting
the boundary. A Fast Marching scheme for the unconstrained game in reduced
coordinates has been presented in [16].

6 Numerical experiments

In this section we present some numerical experiments for two-dimensional con-
strained Tag-Chase game. We consider the case VP > VE as well as VP = VE

and VP < VE . To our knowledge, these two last cases appear for the first time
in a numerical test. The code is written in C++ and its parallel version has been
obtained by means of OpenMP directives. The algorithm ran on a PC equipped
with a processor Intel Pentium dual core 2 × 2.80 GHz, 1 GB RAM and on an
IBM system p5 575 equipped with 8 processors Power5 at 1.9 GHz and 32 GB
RAM located at CASPUR1.

Notations and choice of parameters
We denote by n the number of nodes in each dimension. We denote by nc the
number of admissible directions/controls for each player, i.e., we discretize the
unit ball B(0, 1) with nc points. We restrict the discretization to the boundary
∂B(0, 1) and in some cases we add the central point (in this case we denote the
number of directions by n−

c +1 where n−
c = nc − 1).

1Consorzio interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca,
www.caspur.it.
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We always use a uniform structured grid with four-dimensional cells of volume
Δx4 and we choose the (fictitious) time steph such that ‖hf(x, a, b)‖ ≤ Δx for all
x, a, b (so that the interpolation is made in the neighboring cells of the considered
point).

We introduce the following stopping criterion for the fixed point iteration
V p+1 = F (V p) (where Vi = vk

h(xi))

‖V (p+1) − V (p)‖∞ ≤ ε , ε > 0.

We remark that the quality of the approximate solution depends on h, k and also
(strictly) on the ratio h/k (see [4])

The real game is played in a square [−2, 2]2 so the problem is set in Ω = [−2, 2]4.
The numerical target is T = {(i, j, k, l) ∈ {1, . . . , n}4 : |i− k| ≤ 1 and |j− l| ≤
1}.

Once we computed the approximate solution, we recover the optimal trajecto-
ries. At this stage we have to choose the time step Δt in order to discretize the
dynamical system by Euler scheme. It should be noted that this parameter can, in
general, be different from the (fictitious) time step h chosen for the computation of
the value function (our choice is Δt = Δx/2) and this is true also for the number
of controls nc. Moreover, computing optimal trajectory requires the evaluation of
the argminmax which is done again choosing a value for h, and this value can be
in principle different from that used in the first computation.

We plot some flags (circles for the Pursuer, squares for the Evader) on the
approximate optimal trajectories every s time steps where s varies from 5 to 20
depending on the test. This allows to follow the position of one player with respect
to the other during the game.

We denote by v(xP , yP , xE , yE) the approximate value function and by
T (xP , yP , xE , yE) = − ln(1 − v(xP , yP , xE , yE)) the time of capture.

6.1 Case VP > VE

The case VP > VE is the classical one and it was already studied by Alziary de
Roquefort [2]. In this case, the value function v is continuous and all theoretical
results we presented in this paper hold true. In the following we name “CPU time”
the sum of the times taken by the CPUs and by “wallclock time" the elapsed time.

Test 1
We choose ε = 10−3, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence was
reached in 85 iterations. The CPU time (IBM - 8 procs) was 17h 36m 16s, the
wallclock time was 2h 47m 37s. Figure 8 shows the value function T (0, 0, xE , yE)
and its level sets (we fix the Pursuer’s position at the origin). It is immediately
seen that if the distance between P and E is greater than VP − VE = 1 then the
state constraints have a great influence on the solution. Moreover, it is clear that
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Figure 8: Test 1. Value function T (0, 0, xE , yE) (left) and its level sets (right).

the presence of state constraints gives an advantage to the Pursuer.
Figure 9 shows four optimal trajectories corresponding to the starting points:{
P = (−1, 0)
E = (0, 0)

{
P = (−2,−2)
E = (1, 0.7)

{
P = (−1.8,−1.8)
E = (0.5,−1.6)

{
P = (−1.8,−1.8)
E = (0.5,−1.8).
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Figure 9: Optimal trajectories for Test 1.

Test 2
The second test is just to compare the CPU time corresponding to the two archi-
tectures mentioned above. It is interesting to test the new dual core processors in
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order to understand how much they can be useful in parallel scientific computing.
They are indeed conceived mainly to deal with distributed computing or simply
multitasking. The performances of the parallel code are measured in terms of two
well-known parameters, the speed-up and the efficiency. Let Tser and Tpar be the
times corresponding, respectively, to the execution of the serial and parallel algo-
rithms over np processors. We define

speed-up :=
Tser

Tpar
and efficiency :=

speed-up
np

.

Note that an ideal parallel algorithm would have speed-up = np and efficiency = 1.
Table 1 shows the wallclock time, the speed-up and the efficiency for the following

Table 1: CPU time for Test 2

architecture wallclock time speed–up efficiency

IBM serial 26m 47s - -
IBM 2 procs 14m 19s 1.87 0.93
IBM 4 procs 8m 09s 3.29 0.82
IBM 8 procs 4m 09s 6.45 0.81

PC dual core, serial 1h 08m 44s - -
PC dual core, parallel 34m 51s 1.97 0.99

choice of parameters: ε = 10−5, VP = 2, VE = 1, n = 26, nc = 36 + 1.

Test 3
In this test the domain has a square hole in the center. The side of the square is
1.06. We choose ε = 10−4, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence
was reached in 109 iterations. The CPU time (IBM - 8 procs) was 1d 00h 34m
18s, the wallclock time was 3h 54m 30s. Figure 10 shows the value function
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Figure 10: Test 3. Value function T (−1.5,−1.5, xE , yE).
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T (−1.5,−1.5, xE , yE).
Figure 11 shows two optimal trajectories corresponding to the starting points:{

P = (−1.9,−1.9)
E = (1.9, 1.9)

{
P = (−1.9, 0)
E = (1, 0).

It is interesting to note that in both cases the Evader waits until the Pursuer decides
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Figure 11: Optimal trajectories for Test 3.

if he wants to skirt around the obstacle clockwise or counterclockwise. After that,
the Evader goes in the opposite direction. If both players touch the obstacle, they
run around it until the capture occurs.

Test 4
In this test the domain has a circular hole in the center. The radius r of the circle is
7Δx. We choose ε = 10−4, VP = 2, VE = 1, n = 50, nc = 48+1. Convergence
was reached in 108 iterations. The CPU time (IBM - 8 procs) was 1d 17h 27m 43s,
the wallclock time was 6h 39m 00s. Note that handling with a circular obstacle
inside the domain of computation is not easy as in the previous test where the
boundary of the obstacle matches with the lattice. We adopt the following proce-
dure. First of all, we define the radius r of the circle as a multiple of the space
step Δx. Then, at every node (P=(i, j), E=(k, l)), we compute the distance dPO

(resp., dEO) between P (resp., E) and the center of the domain. Let us focus on
P , E being treated in the same way. If r ≤ dPO < r+ Δx, then we say that P in
on the ”numerical boundary” of the circle. The exterior normal vector η(i, j) to
the (numerical) boundary of the circle is simply given by the coordinates of the
node (i, j), so that we can easily compute the scalar product η · a where a is the
desired direction of P . If the scalar product is negative, we label the direction a
as not admissible.

Figure 12 shows two optimal trajectories corresponding to the starting points:{
P = (−1.9,−1.9)
E = (1.9, 1.9)

{
P = (−0.6, 0)
E = (1, 0.4).

The behavior of the optimal trajectories is similar to the previous Test.
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Figure 12: Optimal trajectories for Test 4.

6.2 Case VP = VE

When VP = VE the value function v is discontinuous on ∂T . In this case no
convergence results are known, nevertheless the numerical scheme seems to work
very well. We remember that results in Sec. 4 guarantee that v < 1 (the capture
always occurs). This is confirmed by the following test.

Test 5
We choose ε = 10−3, VP = 1, VE = 1, n = 50, nc = 36. Convergence was
reached in 66 iterations. Figure 13 shows the value function T (0, 0, xE , yE) and
its level sets. Figure 14 shows the value function T (1.15, 1.15, xE , yE) and its
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Figure 13: Test 5. Value function T (0, 0, xE , yE) (left) and its level sets (right).

level sets. Figure 15 shows four optimal trajectories corresponding to the starting
points:{

P = (0, 1)
E = (0, 0)

{
P = (1, 1.5)
E = (−0.5, 0)

{
P = (1.3, 1.8)
E = (0, 0)

{
P = (−1.9,−1.9)
E = (−1.7,−1.9).
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Figure 14: Test 5. Value function T (1.15, 1.15, xE , yE) (left) and its level sets (right).
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Figure 15: Optimal trajectories for Test 5.

Test 6
In this test the domain has a circular hole in the center. The radius of the circle is
7Δx. Since the domain is no more convex, we have no guarantee that the time of
capture is finite. Numerical results show that the value function v is equal to 1 in
a large part of the domain.

It is well known that it is not possible to recover the optimal trajectories whenever
v = 1 (T = ∞) since from that regions capture never happens. Indeed, ifVP ≤ VE

the approximate solution shows a strange behavior. Even if v < 1, in some cases the
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computed optimal trajectories tend to stable trajectories such that P never reaches
E. Although this is due to some numerical error, these trajectories are extremely
realistic so they give to us a guess about the optimal strategies of the players in the
case E wins. In this Test (and others below) we show this behavior.

We choose ε = 10−4, VP = 1, VE = 1, n = 50, nc = 48 + 1. Convergence
was reached in 94 iterations. The CPU time (IBM - 8 procs) was 1d 12h 05m 22s.
Figure 16 shows one optimal trajectory corresponding to the starting point

−2 −1 0 1 2
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−1.5

−1

−0.5

0

0.5

1

1.5

2

P
E

Figure 16: Optimal trajectories for Test 6.

{
P = (−1.8, 0)
E = (1.2, 0).

In this example, there is no capture within 150 time steps. The asymptotic behavior
of the trajectory is stable since once the two players reached the internal circle,
they run around it forever. It should be noted that, at the beginning of the game, E
leaves the time to go by in order to touch the boundary of the circle exactly when
P touches it.

This strange behavior urges us to invent some method to compute rigorously
the trajectories corresponding to the E’s win, in order to confirm our guess.
Maybe we can do it considering the time-dependent problem (so that we work in
R

5 as Alziary de Roquefort does [2]). This allows one to choose a time-dependent
velocity VE(t) such that it is very fast for 0 ≤ t < t̄ (capture impossible) and very
slow for t > t̄ (capture unavoidable). For such a velocity we have v < 1 so we
can compute optimal trajectories but, for 0 ≤ t < t̄, E will attempt to maintain a
trajectory such that capture does not occur.

6.3 Case VP < VE

If VP < VE the value function v is discontinuous on ∂T . Moreover, we have no
guarantee that the time of capture is finite. Numerical results show that the value
function v is equal to 1 in a large part of the domain.
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Test 7
We choose ε = 10−3, VP = 1, VE = 1.25, n = 50, nc = 48 + 1. Convergence
was reached in 53 iterations. The CPU time (IBM - 8 procs) was 12h 43m 02s,
the wallclock time was 2h 18h 06s.
Figure 17 shows the value function T (−1,−1, xE , yE) and its level sets.
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Figure 17: Test 7. Value function T (−1,−1, xE , yE) (left) and its level sets (right).

Figure 18 shows two optimal trajectories corresponding to the starting points{
P = (−1,−1)
E = (−1, 1)

{
P = (−1,−1)
E = (−0.5,−0.5).

Note that the Pursuer approaches the corner in which capture occurs along the
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Figure 18: Optimal trajectories for Test 7.

diagonal of the square in order to block off the Evader’s escape.

Test 8
We choose ε = 10−4, VP = 1, VE = 1.5, n = 50, nc = 36. Convergence was
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reached in 65 iterations. The CPU time (IBM - 8 procs) was 15h 48m 46s, the
wallclock time was 2h 30m 19s.
Figure 19 shows two optimal trajectories corresponding to the starting points:{

P = (0.5, 0.5)
E = (1.5, 1.5)

{
P = (0,−0.8)
E = (−0.3,−1.3).

In the example on the left,E makes believe he wants to be caught in the upper-left
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Figure 19: Optimal trajectories for Test 8.

corner but after a while he turns on the right toward the upper-right corner. In the
example on the right, there is no capture within 2,000 time steps (see Test 6) and
the asymptotic behavior of the trajectories is quite stable. Moreover, we note that
the ratio between the two radii of the circles are about 1.5 as the ratio between the
velocities of the two players (so that they complete a rotation in the same time).
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