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Hamilton-Jacobi equations

Hamilton-Jacobi equations arise in several applied contexts, e.g.
front propagation, control problems and differential games.

Eikonal equation {
|∇v(x)| = 1 x ∈ Rd \ T
v(x) = 0 x ∈ ∂T

The solution v represents the distance function from ∂T and it is well
understood in the framework of viscosity solutions 1.

Solution to the Eikonal equation in dimension d = 2 with T = {five random points}.

1
M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations,
Trans. Amer. Math. Soc., 277 (1983), 1–42.
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Semi-Lagrangian discretization of the HJB equation

Let G be a structured grid with nodes xi , i = 1, . . . ,N and space step ∆x .

SL discretization of the HJB equation

w(xi ) = min
a∈A

{
w(x̃i ,a) +

|xi − x̃i ,a|
|f (xi , a)|

}
, xi ∈ G

where x̃i ,a is a non-mesh point, obtained by integrating, until a certain
final time ŝ, the ODE {

ẏ(s) = f (y , a), s ∈ [0, ŝ]
y(0) = xi

and then setting x̃i ,a = y(ŝ). To make the scheme fully discrete, the set of
admissible controls A is discretized in Nc points.

We get different versions of the SL scheme varying ŝ, the method used to
solve the ODE and the interpolation method used to compute w(x̃i ,a).
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Semi-Lagrangian discretization of the HJB equation

Explicit forward Euler scheme for the ODE + linear interpolation

f (xi , a) x̃i,a

xi xi,1

xi,2

f (xi , a)

x̃i,a

xi xi,1

xi,3 xi,2

2-points SL 3-points SL

2pSL: x̃i ,a intercepts the line connecting xi ,1 and xi ,2.

3pSL: x̃i ,a is at distance ∆x from xi .
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Stationary Hamilton-Jacobi equations

Equations we are interested in can be recast as minimum time problems.
By choosing the set of admissible controls A = B1(0) we get the following

Reference equations

f (x , a) HJ equation Name

a |∇T (x)| = 1 homogeneous eikonal

c1(x)a c1(x)|∇T (x)| = 1 nonhomogeneous eikonal

c2(a)a c2

(
∇T
|∇T |

)
|∇T (x)| = 1 hom. anisotropic eikonal

c3(x , a)a c3

(
x , ∇T
|∇T |

)
|∇T (x)| = 1 nonhom. anisotropic eikonal

The functions c1, c2, c3 are strictly positive and Lipschitz continuous.
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Classical iterative method

How to solve the nonlinear system?

w(xi ) = S [w ](xi ) := min
a∈A

{
w(x̃i ,a) +

|xi − x̃i ,a|
|f (xi , a)|

}
, xi ∈ G

Fixed point algorithm

Given an initial guess w (0) iterate on the grid G

w (k) = S [w (k−1)] k = 1, 2, 3, ...

until max
xi∈G
|w (k)(xi )− w (k−1)(xi )| < ε
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Classical iterative method

Pros

* Numerical approximation of viscosity solution in any dimension for any f .
* Easy implementation.
* Easy parallelization.
* A priori error estimates in L∞.
* Structured or unstructured grids.

Cons

* “Curse of dimensionality” (exponentially increasingly nonlinear systems
for high dimensional problems)
⇒ huge computational efforts
⇒ huge memory resources.
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Causality as source of efficiency

At the continuous level, information emanates from the target set T and
propagates along characteristic lines.

T

By mimicking this behavior at the discrete level, one can produce a
reordering of the grid nodes that decouples the nonlinear system.
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Local Single Pass algorithms

Causality

Exploit physical/geometric properties of the HJ equations to find an
ordering of the grid nodes that avoid useless computations.

Locality

The computation is dynamically localized on the grid nodes carrying
relevant information (few, compared to the entire grid).
Each node is computed using only neighboring nodes.

Single Pass property

Each node is re-computed at most r times, where r only depends on the
equation and the grid structure, not on the number of grid nodes.

E. Cristiani (IAC–CNR) Numerical Methods for Optimal Control Pbs. March 2013 10 / 21



Fast Marching Method (FMM)

Inspired by Dijkstra’s algorithm3 for the shortest path problem on a graph,
FMM (by Tsitsiklis4 and Sethian5) is a local single pass method for the
Eikonal equation.

•Accepted •◦Considered ◦Far

FMM algorithm
Set T = 0 in ACC and T = +∞ in FAR
Compute T in CONS

While(CONS 6= ∅)
Find x̄ = argmin

x∈CONS
T (x)

Move x̄ from CONS to ACC

Move !ACC neighbors of x̄ in CONS (if not
yet in) and (re)compute T on them

End While

3
E. W. Dijkstra, A note on two problems in connexion with graphs, 1959.

4
J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, 1995.

5
J. A. Sethian, A fast marching level set method for monotonically advancing fronts, PNAS USA, 1996.
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Why FMM works?

FMM computes each node in CONS by means of nodes with smaller
values (practical implementations enforce the use of nodes in ACC only!).

The solution is computed in ascending order, so that the node in CONS
with minimal value is the only not influenced by other nodes in CONS.

The minimal value rule corresponds to get information from the simplex
containing −∇T (and implies that CONS approximately expands as a
level set of T ).

For the Eikonal equation, characteristic lines coincide with gradient lines of
the solution itself, hence FMM computes the correct solution.

For general HJ equations this is not true!
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FMM’s FAILURE: Anisotropic Eikonal equation

f (x , a) = (1 + (λ a1 + µ a2)2)−
1
2 a

a = (a1, a2) ∈ B1(0), λ, µ > 0 , T = (0, 0)

EXACT FMM

Wide divergence between characteristic and gradient lines!
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Beyond FMM

Several directions of research: high order accuracy, smart implementations,
different schemes (FD, SL, DG, FV), other competitive approaches (FS,
FI, MaxPlus), hybrid methods, more general HJ equations.

Some references
K. Alton, I. M. Mitchell, An ordered upwind method with precomputed stencil and monotone node acceptance for solving
static convex Hamilton-Jacobi equations, J. Sci. Comput., 51 (2012), pp. 313–348.

S. Cacace, E. Cristiani, M. Falcone, Requiem for local sinlge-pass methods solving stationary Hamilton-Jacobi equations?,
submitted to SIAM J. Sci. Comput., preprint arXiv 1301.6775.

E. Carlini, M. Falcone, N. Forcadel, R. Monneau, Convergence of a Generalized Fast Marching Method for an Eikonal
equation with a velocity changing sign, SIAM J. Numer. Anal., 46 (2008), pp. 2920–2952.

A. Chacon, A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM J. Sci. Comput., 34 (2012), pp. 547–578.

E. Cristiani, A Fast Marching method for Hamilton-Jacobi equations modeling monotone front propagations, J. Sci. Comput.,
39 (2009), pp. 189–205.

E. Cristiani, M. Falcone, Fast semi-Lagrangian schemes for the Eikonal equation and applications, SIAM J. Numer. Anal.,
45 (2007), pp. 1979–2011.

W.-K. Jeong, R. T. Whitaker, A Fast Iterative Method for Eikonal Equations, SIAM J. Sci. Comput., 30 (2008), pp.
2512–2534.

S. Kim, An O(N) level set method for eikonal equations, SIAM J. Sci. Comput., 22 (2001), pp. 2178–2193.

W. M. McEneaney, Max-Plus Methods for Nonlinear Control and Estimation, Birkhauser Systems and Control Series, 2006.

J. A. Sethian, A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms, SIAM
J. Numer. Anal., 41 (2003), pp. 325–363.

H. Zhao, A fast sweeping method for Eikonal equations, Math. Comp., 74 (2005), pp. 603–627.
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Can Local Single Pass methods solve every HJ equation?

Let us classify HJ equations in two classes:

(EIK) Eikonal-like equations, whose characteristic lines coincide or lie in
the same simplex of the gradient lines of their solutions.

(¬EIK) Non Eikonal-like equations, for which there exists at least a grid
node where the characteristic line and the gradient of the solution do not
lie in the same simplex.

By construction FMM works for equations of type EIK and fails for
equations of type ¬EIK (e.g. the Anisotropic Eikonal equation).

Is the minimal value rule really needed?

In order to solve ¬EIK equations, CONS cannot be at any time an
approximation of a level set, i.e. we have to drop the minimal value rule.
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Can Local Single Pass methods solve every HJ equation?

We consider another classification:

(DIFF) Equations with smooth characteristics. Information spreads from
the target T to the rest of the space along smooth lines, without shocks.
The solution T is differentiable.

(¬DIFF) Equations with non smooth characteristics. Information starts
from the target T and then crashes, creating shocks.
The solution T is Lipschitz continuous.

DIFF ¬DIFF

T T

TSHOCK
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Can Local Single Pass methods solve every HJ equation?

T (xi ) = min
a∈A

{
T (x̃i ,a) +

|xi − x̃i ,a|
|f (xi , a)|

}
, xi ∈ G

Safeness

A node xi ∈CONS is said to be safe if T (xi ) is computed using values at
neighboring interpolation points which are in ACC only.

Warning! Safeness makes sense if nodes in CONS can be computed using
nodes both in ACC and CONS.
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Can Local Single Pass methods solve every HJ equation?

Safe “Method” (SM)

At each step, every safe node in CONS enters ACC.

SM can solve DIFF equations (both EIK and ¬EIK), it is much faster than
FMM (multiple node acceptance, no search of min value in CONS).

SM fails for equations of type ¬DIFF.

EIK&¬DIFF: FMM works EIK&¬DIFF: SM fails
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Can Local Single Pass methods solve every HJ equation?

How to handle the shocks?

As in the continuous case, a grid node ∆x-close to a shock has to be
approached by the ACC region approximately at the same time from the
directions corresponding to the characteristic lines.

This property is satisfied by FMM in the case EIK, since CONS is
approximately a level set.
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Requiem for Local Single Pass methods?

¬EIK&¬DIFF equations are very hard (if not impossible) to solve

¬EIK requires CONS not to be a level set, whereas
CONS∼ level set seems the only way to handle shocks in ¬DIFF.

A shock crossing a region with strong anisotropy. What to do?
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