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Optimal control problems

Introduction

Controlled nonlinear dynamical system
y(S) = f(y(5)7a(5))7 s>t
y(t)=x eR"
Solution:
}/x,a(s)

Admissible controls: « € A :={a: [t,+0) = A}, ACR"”

Regularity assumptions

Are they meaningful from the numerical point of view? Discussion.
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Optimal control problems

Payoff

J
n2y Heele]

Infinite horizon problem

Jetlo] = C><>r Yx,als),a(s))e *ds, pn>0
[ rlmeorat6)

Finite horizon problem

Iy tla] = ' r(¥x,a(s),a(s) )ds + g(yx,a(T))
J

Target problem

Jytla] = ’ r{ ¥xa(s),a(s))ds, 7:=min{s:yca(s) €T}
[ r(ometer.ae)
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Finite horizon problem HJB approach

HJB equation

Value function

v(x,t) = max Jx.t[], x€eR" te|0,T]

Theorem (HJB equation)

Assume that v € C1. Then v solves
ve(x, t) + ma2‘<{f(x, a)- Viv(x,t)+r(x,a)} =0, xeR", te[0,T)
ac
with the terminal condition

vix, T)=g(x), x€R"

sup{J}=-inf{-J}

What about cost functionals to be minimized?

v
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Finite horizon problem Find optimal trajectories from HJB

Find o* by means of v
Given v(x, t) for any x € R" and t € [0, T], we define

O, 1) = argmax((x,3) - Vev(x,£) + r(x,3)}
or, coming back to the original variables,

Ofeedback (¥, 5) = argmax{f(y, a) - Viv(y,s) + r(y, a)}.
Then, the optimal control is

a’(s) = Qfeedback(¥7(5), 5)

where y*(s) is the solution of

{ y*(;) = f(y*(s)7a?eedback(y*(s)7s))7 s>t
t

E. Cristiani (IAC-CNR) Numerical Methods for Optimal Control Pbs March 2013

7/18



Finite horizon problem PMP approach

PMP

Theorem (Pontryagin Minimum Principle)

Assume «* is optimal and y* is the corresponding trajectory. Then there
exists a function p* : [t, T] — R" (costate) such that

y*(s) = f(y*(s), a*(s))
p*(s) = =Vt (y*(s),a(s)) - p*(s) — Vur(y*(s), *(s))

o’ (s) = argmax {F(y*(s), a) - p*(s) + r(y"(5). 3)}

with initial condition y*(t) = x and terminal condition p*(T) = Vg(y*(T)).

PMP can fail!

Along the optimal trajectory the Hamiltonian H(y*, p*,a*) = f* - p* + r*
may not be an explicit function of the control inputs.
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Finite horizon problem HJB<>PMP connection

HJB<«PMP connection

Theorem
If v e C2, then

p*(s) = Vixv(y*(s),s), selt, T]

The gradient of the value function gives the optimal value of the costate
all along the optimal trajectory, in particular for s = t!
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Finite horizon problem Numerical approximation

Direct methods

The control problem is entirely discretized and it is written in the form

Discrete problem
Find £* such that  J(¢*) = maxeern J(€),  with J: R" = R.

Fix a grid (s',...,s",...,sV) in [t, T] with s" — s""1 = As. A discrete
control function « is characterized by the vector (a?,. .., aN) with

a = afs").

Given (at,...,aN), the ODE is discretized, for example, by

yn+1 _ yn + As f(yn’an).
and so it is the payoff, for example

J(a) = Z r(y",a™)As + g(y"N) + penalization for ctrl and state constr.

n

Then, a gradient method is used to maximize J.
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Finite horizon problem Numerical approximation

Semi-Lagrangian discretization of HJB

ve(x, t) + max {f(x,a) - Viv(x,t) +r(x,a)} =0, xeR", t€[0,T) J
ac

Fix a grid in Q x [0, T], with Q C R"” bounded. Steps: Ax, At. Nodes:

{x1,...,xm}, {t},..., tN}. Discrete solution: w ~ v(x;,s").
w! —w w'(xi + At f(x;,a)) — w!
At +TeaAX{ ( At 1= a0
w = max w” (x;j + At f(x;,a)) +r(xi,a) p =0
ac

~
to be interpolated

CFL condition (not needed but useful)

At max |f(x,a)| < Ax
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Finite horizon problem Numerical approximation

Shooting method for PMP

Find the solution of S(pg) = 0, where

S(po) == p(T) = Ve(x(T))
and p(T) and y(T) are computed solving the ODEs

a" = arg Teaj{f(y", a)-p"+r(y" a)}
y=y"+ As f(y", a")
Pt = p" 4+ As (=Vif(y", a") - p" — Vir(y", a"))
with only initial conditions

y'=x and p'=po

The solution of S(pg) = 0 can be found by means of an iterative method
like bisection, Newton, etc.
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Finite horizon problem Numerical approximation

HJB«PMP for numerics

|dea [CM10]
@ Solve HIB on a coarse grid
@ Compute Viv(x,0) = po
© Use it as initial guess for the shooting method.

Advantages
@ Fast in dimension < 4, feasible in dimension 5-6.
© Highly accurate
© Reasonable guarantee to converge to the global maximum of J.
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Minimum time problem with target HJB approach

HJB equation

Value function

== min J[a], R” =
v(x) LnélzJ [a], xe€ (t=0)

with cost functional

Ji[a] = ’ r( yxa(s), a(s))ds + g(yxa(7)), 7:=min{s: yxa(s) € T}
; rlateret0)

Theorem (HJB equation)

Assume that v € CL. Then v solves the stationary equation

max{—f(x,a) - Vev(x) = r(x,2)} =0, x €R\T

with boundary conditions

v(x) =g(x), xe€adT
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Minimum time problem with target HJB approach

HJB equation

Eikonal equation
If f(x,a) =c(x)a, A=B(0,1), r=1, and g =0, we get

. =1 R"
aerg?gfl){c(x)a Vv(x)} =1, xeRNT

or, equivalently,
c(X)|Vv(x)| =1, xeRNT

with boundary conditions
v(x)=0, xe€0T

Optimal trajectories = characteristic lines = gradient lines
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Minimum time problem with target PMP approach

PMP

Theorem (Pontryagin Minimum Principle)

Assume o is optimal and y* is the corresponding trajectory. Then there
exists a function p* : [0, 7] — R" (costate) such that

7 (s) = Fy*(s), a*(5))
§(5) = ~Vf(y"(5),@"(5)) - P*(5) = Vir(y*(s), " (s))
o’ (s) = argmax {F(y*(s), a) - p*(s) + r(y"(5). 2)}
and
F(y' (7). 0*(5) - () + r(y*(s),0*()) = 0, s €[0,7] (HIB)

with initial condition y*(0) = x.
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Minimum time problem with target Numerics for HJB

Semi-Lagrangian discretization of HJB

wj = m€|£| {W(X,- + At f(x,-,a)) + At r(x,-,a)}
a

Iterative solution

The fixed-point problem can be solved iterating the scheme until
convergence, starting from any initial guess

.(k+1) — i (k) (. ] ]
w; Lnelg{w (xi + At f(x;,a)) + At r(x;,a)}

WO +oo  x; € RN\T
) glx) xi€0T

CFL condition (not needed but useful)

At max |f(x,a)| < Ax
x,a
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Minimum time problem with target Numerics for PMP

Shooting method for PMP

Find the solution of S(pg, ) = 0 where

S(po.7) = (W(r) ~ T Fly(r).ar) - p(7) + r(y(r). ()
and y(7), p(7) and a(7) are computed solving the ODEs

o = argmax{f(y",a) - p" +r(y", a)}

yn+1 =y"+ At f(y”,a”)

Pt =p" + At (=Vif(y",a") - p" — Vir(y", a"))
with only initial conditions

y'=x and p'=pp
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