Numerical Methods for Optimal Control Problems. Part I: Hamilton-Jacobi-Bellman Equations and Pontryagin Minimum Principle

Ph.D. course in OPTIMAL CONTROL

Emiliano Cristiani (IAC-CNR) e.cristiani@iac.cnr.it

March 2013

- References
- Optimal control problems
- Finite horizon problem
 - HJB approach
 - Find optimal trajectories from HJB
 - PMP approach
 - HJB↔PMP connection
 - Numerical approximation
 - Direct methods
 - HJB
 - PMP
 - Exploiting HJB → PMP connection
- Minimum time problem with target
 - HJB approach
 - PMP approach
 - Numerics for HJB
 - Numerics for PMP

Main references

- M. Bardi, I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Boston, 1997.
- 2 J. T. Betts, *Practical methods for optimal control and estimation using nonlinear programming*, SIAM, 2010.
- E. Cristiani, P. Martinon, Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach, J. Optim. Theory Appl., 146 (2010), 321–346.
- L. C. Evans, An introduction to mathematical optimal control theory, http://math.berkeley.edu/~evans/
- E. Trélat, Contrôle optimal: théorie et applications, http://www.ljll.math.upmc.fr/~trelat/

Introduction

Controlled nonlinear dynamical system

$$\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)), & s > t \\ y(t) = x \in \mathbb{R}^n \end{cases}$$

Solution:

$$y_{x,\alpha}(s)$$

Admissible controls: $\alpha \in \mathcal{A} := \{\alpha : [t, +\infty) \to A\}, \quad A \subset \mathbb{R}^m$

Regularity assumptions

Are they meaningful from the numerical point of view? Discussion.

Payoff

$$\max_{\alpha \in \mathcal{A}} J_{x,t}[\alpha]$$

Infinite horizon problem

$$J_{x,t}[\alpha] = \int_{t}^{\infty} r(y_{x,\alpha}(s), \alpha(s)) e^{-\mu s} ds, \quad \mu > 0$$

Finite horizon problem

$$J_{x,t}[\alpha] = \int_{t}^{T} r(y_{x,\alpha}(s), \alpha(s)) ds + g(y_{x,\alpha}(T))$$

Target problem

$$J_{x,t}[\alpha] = \int_{t}^{\tau} r(y_{x,\alpha}(s), \alpha(s)) ds, \quad \tau := \min\{s : y_{x,\alpha}(s) \in \mathcal{T}\}$$

HJB equation

Value function

$$v(x,t) := \max_{\alpha \in A} J_{x,t}[\alpha], \qquad x \in \mathbb{R}^n, \ t \in [0,T]$$

Theorem (HJB equation)

Assume that $v \in C^1$. Then v solves

$$v_t(x,t) + \max_{a \in A} \{f(x,a) \cdot \nabla_x v(x,t) + r(x,a)\} = 0, \quad x \in \mathbb{R}^n, \ t \in [0,T)$$

with the terminal condition

$$v(x, T) = g(x), \quad x \in \mathbb{R}^n$$

$sup{J}=-inf{-J}$

What about cost functionals to be minimized?

E. Cristiani (IAC-CNR)

Find α^* by means of ν

Given v(x,t) for any $x \in \mathbb{R}^n$ and $t \in [0,T]$, we define

$$\alpha^*_{\mathsf{feedback}}(x,t) := \arg\max_{a \in A} \{ f(x,a) \cdot \nabla_{\!\! x} v(x,t) + r(x,a) \}$$

or, coming back to the original variables,

$$\alpha^*_{\mathsf{feedback}}(y,s) := \arg\max_{a \in A} \{ f(y,a) \cdot \nabla_{\!x} v(y,s) + r(y,a) \}.$$

Then, the optimal control is

$$\alpha^*(s) = \alpha^*_{\mathsf{feedback}}(y^*(s), s)$$

where $y^*(s)$ is the solution of

$$\begin{cases} \dot{y}^*(s) = f(y^*(s), \alpha^*_{\mathsf{feedback}}(y^*(s), s)), & s > t \\ y(t) = x \end{cases}$$

Theorem (Pontryagin Minimum Principle)

Assume α^* is optimal and y^* is the corresponding trajectory. Then there exists a function $p^*:[t,T]\to\mathbb{R}^n$ (costate) such that

$$\begin{cases} \dot{y}^*(s) = f(y^*(s), \alpha^*(s)) \\ \dot{p}^*(s) = -\nabla_x f(y^*(s), \alpha^*(s)) \cdot p^*(s) - \nabla_x r(y^*(s), \alpha^*(s)) \\ \alpha^*(s) = \arg\max_{a \in A} \left\{ f(y^*(s), a) \cdot p^*(s) + r(y^*(s), a) \right\} \end{cases}$$

with initial condition $y^*(t) = x$ and terminal condition $p^*(T) = \nabla g(y^*(T))$.

PMP can fail!

Along the optimal trajectory the Hamiltonian $H(y^*, p^*, a^*) = f^* \cdot p^* + r^*$ may not be an explicit function of the control inputs.

HJB↔PMP connection

Theorem

If $v \in C^2$, then

$$p^*(s) = \nabla_{x} v(y^*(s), s), \quad s \in [t, T].$$

The gradient of the value function gives the optimal value of the costate all along the optimal trajectory, in particular for s = t!

Direct methods

The control problem is entirely discretized and it is written in the form

Discrete problem

Find ξ^* such that $J(\xi^*) = \max_{\xi \in \mathbb{R}^n} J(\xi)$, with $J : \mathbb{R}^n \to \mathbb{R}$.

Fix a grid $(s^1, \ldots, s^n, \ldots, s^N)$ in [t, T] with $s^n - s^{n-1} = \Delta s$. A discrete control function α is characterized by the vector $(\alpha^1, \dots, \alpha^N)$ with $\alpha^n = \alpha(s^n).$

Given $(\alpha^1, \dots, \alpha^N)$, the ODE is discretized, for example, by

$$y^{n+1} = y^n + \Delta s \ f(y^n, \alpha^n).$$

and so it is the payoff, for example

$$J(\alpha) = \sum_{n} r(y^n, \alpha^n) \Delta s + g(y^N) + \text{penalization for ctrl and state constr.}$$

Then, a gradient method is used to maximize J.

Semi-Lagrangian discretization of HJB

$$v_t(x,t) + \max_{a \in A} \left\{ f(x,a) \cdot \nabla_x v(x,t) + r(x,a) \right\} = 0, \quad x \in \mathbb{R}^n, \ t \in [0,T)$$

Fix a grid in $\Omega \times [0, T]$, with $\Omega \subset \mathbb{R}^n$ bounded. Steps: Δx , Δt . Nodes: $\{x_1,\ldots,x_M\}, \{t^1,\ldots,t^N\}.$ Discrete solution: $w_i^n \approx v(x_i,s^n).$

$$\frac{w_i^n - w_i^{n-1}}{\Delta t} + \max_{a \in A} \left\{ \frac{w^n(x_i + \Delta t \ f(x_i, a)) - w_i^n}{\Delta t} + r(x_i, a) \right\} = 0$$

$$w_i^{n-1} = \max_{a \in A} \left\{ \underbrace{w^n(x_i + \Delta t \ f(x_i, a))}_{\text{to be interpolated}} + r(x_i, a) \right\} = 0$$

CFL condition (not needed but useful)

$$\Delta t \max_{x,a} |f(x,a)| \leq \Delta x$$

Shooting method for PMP

Find the solution of $S(p_0) = 0$, where

$$S(p_0) := p(T) - \nabla g(y(T))$$

and p(T) and y(T) are computed solving the ODEs

$$\begin{cases} \alpha^{n} = \arg\max_{a \in A} \left\{ f(y^{n}, a) \cdot p^{n} + r(y^{n}, a) \right\} \\ y^{n+1} = y^{n} + \Delta s \ f(y^{n}, \alpha^{n}) \\ p^{n+1} = p^{n} + \Delta s \ (-\nabla_{x} f(y^{n}, \alpha^{n}) \cdot p^{n} - \nabla_{x} r(y^{n}, \alpha^{n})) \end{cases}$$

with only initial conditions

$$y^1 = x$$
 and $p^1 = p_0$

The solution of $S(p_0) = 0$ can be found by means of an iterative method like bisection, Newton, etc.

E. Cristiani (IAC-CNR)

HJB↔PMP for numerics

Idea [CM10]

- Solve HJB on a coarse grid
- 2 Compute $\nabla_x v(x,0) = p_0$
- Use it as initial guess for the shooting method.

Advantages

- Fast in dimension < 4, feasible in dimension 5-6.
- 4 Highly accurate
- \odot Reasonable guarantee to converge to the global maximum of J.

HJB equation

Value function

$$v(x) := \min_{\alpha \in \mathcal{A}} J_x[\alpha], \quad x \in \mathbb{R}^n \quad (t = 0)$$

with cost functional

$$J_{\mathsf{X}}[\alpha] = \int_0^\tau r\Big(y_{\mathsf{X},\alpha}(s),\alpha(s)\Big)ds + g\big(y_{\mathsf{X},\alpha}(\tau)\big), \quad \tau := \min\{s: y_{\mathsf{X},\alpha}(s) \in \mathcal{T}\}$$

Theorem (HJB equation)

Assume that $v \in C^1$. Then v solves the stationary equation

$$\max_{a \in A} \{ -f(x, a) \cdot \nabla_x v(x) - r(x, a) \} = 0, \quad x \in \mathbb{R}^n \setminus \mathcal{T}$$

with boundary conditions

$$v(x) = g(x), \quad x \in \partial \mathcal{T}$$

HJB equation

Eikonal equation

If
$$f(x, a) = c(x)a$$
, $A = B(0, 1)$, $r \equiv 1$, and $g \equiv 0$, we get

$$\max_{a \in B(0,1)} \{c(x)a \cdot \nabla v(x)\} = 1, \quad x \in \mathbb{R}^n \setminus \mathcal{T}$$

or, equivalently,

$$c(x)|\nabla v(x)|=1, \quad x\in\mathbb{R}^n\setminus\mathcal{T}$$

with boundary conditions

$$v(x) = 0, \quad x \in \partial \mathcal{T}$$

Optimal trajectories \equiv characteristic lines \equiv gradient lines

Theorem (Pontryagin Minimum Principle)

Assume α^* is optimal and y^* is the corresponding trajectory. Then there exists a function $p^*: [0, \tau] \to \mathbb{R}^n$ (costate) such that

$$\begin{cases} \dot{y}^*(s) = f(y^*(s), \alpha^*(s)) \\ \dot{p}^*(s) = -\nabla_x f(y^*(s), \alpha^*(s)) \cdot p^*(s) - \nabla_x r(y^*(s), \alpha^*(s)) \\ \alpha^*(s) = \arg\max_{a \in A} \left\{ f(y^*(s), a) \cdot p^*(s) + r(y^*(s), a) \right\} \end{cases}$$

and

$$f(y^*(\tau), \alpha^*(s)) \cdot p^*(s) + r(y^*(s), \alpha^*(s)) = 0, \quad s \in [0, \tau]$$
 (HJB)

with initial condition $y^*(0) = x$.

401491471717

Semi-Lagrangian discretization of HJB

$$w_i = \min_{a \in A} \left\{ w(x_i + \Delta t \ f(x_i, a)) + \Delta t \ r(x_i, a) \right\}$$

Iterative solution

The fixed-point problem can be solved iterating the scheme until convergence, starting from any initial guess

$$w_i^{(k+1)} = \min_{a \in A} \left\{ w^{(k)} \left(x_i + \Delta t \ f(x_i, a) \right) + \Delta t \ r(x_i, a) \right\}$$

$$w_i^{(0)} = \left\{ \begin{array}{ll} +\infty & x_i \in \mathbb{R}^n \backslash \mathcal{T} \\ g(x_i) & x_i \in \partial \mathcal{T} \end{array} \right.$$

CFL condition (not needed but useful)

$$\Delta t \max_{x,a} |f(x,a)| \leq \Delta x$$

Shooting method for PMP

Find the solution of $S(p_0, \tau) = 0$ where

$$S(p_0,\tau) := \Big(y(\tau) - \mathcal{T}, f(y(\tau),\alpha(\tau)) \cdot p(\tau) + r(y(\tau),\alpha(\tau))\Big)$$

and $y(\tau)$, $p(\tau)$ and $\alpha(\tau)$ are computed solving the ODEs

$$\begin{cases} \alpha^{n} = \arg\max_{a \in A} \{f(y^{n}, a) \cdot p^{n} + r(y^{n}, a)\} \\ y^{n+1} = y^{n} + \Delta t \ f(y^{n}, \alpha^{n}) \\ p^{n+1} = p^{n} + \Delta t \ (-\nabla_{x} f(y^{n}, \alpha^{n}) \cdot p^{n} - \nabla_{x} r(y^{n}, \alpha^{n})) \end{cases}$$

with only initial conditions

$$y^1 = x$$
 and $p^1 = p_0$

イロ > イ押 > イヨ > イヨ > ヨ のQで