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Abstract. The aim of this paper is to solve an inverse problem which regards a mass moving in a bounded
domain. We assume that the mass moves following an unknown velocity field and that the evolution
of the mass density can be described by a partial differential equation, which is also unknown. The
input data of the problems are given by some snapshots of the mass distribution at certain times,
while the sought output is the velocity field that drives the mass along its displacement. To this aim,
we put in place an algorithm based on the combination of two methods: first, we use the dynamic
mode decomposition to create a mathematical model describing the mass transfer; second, we use the
notion of Wasserstein distance (also known as earth mover's distance) to reconstruct the underlying
velocity field that is responsible for the displacement. Finally, we consider a real-life application: the
algorithm is employed to study the travel flows of people in large populated areas using, as input
data, density profiles (i.e., the spatial distribution) of people in given areas at different time instants.
These kinds of data are provided by the Italian telecommunication company TIM and are derived
by mobile phone usage.
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1. Introduction. In this paper we aim at solving an inverse problem which regards a mass
moving in a bounded domain with finite velocity. We assume that the mass moves following
an unknown velocity field and that the evolution of the mass density can be described by
an unknown PDE. The input data of the problem are given by some snapshots of the mass
distribution at certain times, while the sought information is the velocity field that drives the
mass along its displacement.

The basic idea can be summarized as follows: given two snapshots of the mass distribution
at two instants of time, we want to understand where each portion of the mass (which is
assumed to be conserved from one instant of time to the other) is transported from/to, i.e., how
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the first spatial distribution is rearranged in the second one. The goal is pursued by computing
a numerical approximation of the Wasserstein distance (also known as earth mover's distance
or Mallows distance) between the two consecutive density profiles, specifying a suitable cost
function which measures the ``energy"" consumed by the system for moving forward. The
computation of the Wasserstein distance gives, as a by-product, the minimum-cost mass flow
from the first to the second configuration, i.e., how the mass distributes in space and time.

Despite the good preliminary results obtained by the above described Wasserstein-based
approach [2, 19], the algorithm is found to be excessively expensive both in terms of CPU time
and memory requirements. This fact strongly restricts the applicability of the method. To fix
this, in this paper we propose to couple the method with the dynamic mode decomposition
(DMD): a data-driven technique that takes as input the snapshots of the mass distribution
and returns an analytical approximation of the dynamics underlying the mass transfer. More
precisely, it provides a system of ODEs which describes the evolution of the mass in any
point of the domain. Solving the ODEs, we are able to recover the mass distribution at any
time, thus increasing at will the number of available snapshots or, analogously, decreasing
at will the time frame between them. Controlling the time frame between two consecutive
snapshots is the key to simplifying the computation of the Wasserstein distance and makes
the computation of the flows feasible even on large domains.

Finally, a real-world application of the proposed methodology is illustrated. We are inter-
ested in inferring activity-based human mobility flows from mobile phone data. We assume
that mobile devices are not singularly tracked, but their logs are aggregated in order to obtain
the total number of users in a given area. In this way we get the density profiles (i.e., the
spatial distribution) of people in a given area at various instants of time. The dataset we have
at our disposal is provided by the Italian telecommunication company TIM. The time frame
between two consecutive snapshots is 15 minutes.

As before, the goal is to ``assign a direction"" to the presence data. In fact, the mere repre-
sentation of the time varying density of people clearly differentiates attractive from repulsive
or neutral areas but does not provide any information about the directions of flows of peo-
ple. In other words, we are interested in a ``where-from-where-to"" type of information, which
reveals travel flows and patterns of people providing a sort of origin-destination matrix.

Paper organization. The paper is organized as follows. In section 2 we present the DMD
method and the Wasserstein distance. In section 3 we show how to couple those methods to
obtain an efficient algorithm. In section 4 we apply the proposed approach to real-life data.
In section 5 we draw our conclusions. Finally, in Appendix A we apply the DMD method to
the viscous Burgers' equation.

2. Mathematical background. In this section we recall the building blocks of the method-
ology proposed in the paper, namely, the DMD method used to build a data-driven model,
and the Wasserstein distance to determine the transport map driving the moving mass.

2.1. DMD method. DMD is a data-driven method capable of providing accurate assess-
ments of the spatio-temporal coherent structures in a given complex system, or short-time
future estimates of such a system. Although a complete list of references for DMD goes be-
yond the scope of this work, we would like to mention [3, 5, 6, 13, 15]. In the current work
we use the DMD algorithm as in [16].
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1374 A. ALLA, C. BALZOTTI, M. BRIANI, AND E. CRISTIANI

To begin, we suppose we have a set of data \scrX = \{ y(t0), . . . ,y(tn\mathrm{f}
)\} for some time instances

\{ tj\} n\mathrm{f}
j=0 with y(tj) \in \BbbR N , j = 0, . . . , n\mathrm{f}, and \Delta t = tj+1  - tj for j = 0, . . . , n\mathrm{f}  - 1. The goal of

the method is to build a mathematical model upon the dataset \scrX \in \BbbR N\times (n\mathrm{f}+1). The DMD
procedure thus constructs the approximate linear evolution \widehat y(t) for the dataset \scrX exploiting
its low-rank structure:

(2.1)
d\widehat y
dt

= \widehat A\widehat y,
where \widehat A \in \BbbR N\times N is unknown, \widehat y(0) = \widehat y0, and the solution has the form

(2.2) \widehat y(t) = r\sum 
i=1

\beta i\bfitpsi i exp(\omega it) ,

where r < N,\bfitpsi i and \omega i are the eigenvectors and eigenvalues of the unknown matrix \widehat A. The
coefficients \beta i of the vector \bfitbeta can be determined from the initial data. For example, at t = t0
we have y(t0) = y0 so that (2.2) gives \bfitbeta = \Psi \dagger y0, where \Psi is a matrix comprised of the DMD
modes \bfitpsi i and \dagger denotes the Moore--Penrose pseudoinverse. To compute the matrix \widehat A, we
first split the dataset into two snapshot matrices

(2.3) Y=

\left[  y(t0) y(t1) \cdot \cdot \cdot y(tn\mathrm{f} - 1)

\right]  , Y\prime =

\left[  y(t1) y(t2) \cdot \cdot \cdot y(tn\mathrm{f}
)

\right]  
and suppose the following linear relation hold true:

(2.4) Y\prime = AY,

where A := exp (\widehat A\Delta t).
Specifically, we assume that y(tj) is an initial condition to obtain y(tj+1), i.e., its cor-

responding output after some prescribed evolution time \Delta t > 0. Thus, the DMD method
computes the best linear operator A relating to the matrices above:

(2.5) A = Y\prime Y\dagger .

We refer to Y and Y\prime as input and output snapshot matrices, respectively.
The DMD algorithm aims at optimally constructing the matrixA so that the error between

the true and approximate solution is small in a least-squares sense, i.e., \| y(t) - \widehat y(t)\| \ll 1. Of
course, the optimality of the approximation holds only over the sampling window where A is
constructed, but the approximate solution can be used to make future state predictions, and
to decompose the dynamics into various time scales.

The matrix A is often highly ill-conditioned and when the state dimension n is large, the
aforementioned matrix may even be intractable to analyze directly. Instead, DMD circumvents
the eigendecomposition of A by considering a low-rank representation in terms of a matrix \widehat A
projected with the proper orthogonal decomposition (POD). Although the description of the
POD method goes beyond the scope of this paper, we recall that the POD projection solves
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the following optimization problem,

(2.6) min
\bfitvarphi 1,...,\bfitvarphi r\in \BbbR n

n\mathrm{f} - 1\sum 
j=0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| y(tj) - 
r\sum 

i=1

\langle y(tj),\bfitvarphi i\rangle \bfitvarphi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

such that \langle \bfitvarphi i,\bfitvarphi j\rangle = \delta ij ,

where \{ \bfitvarphi i\} ri=1 are the POD projectors. The solution of the optimization problem (2.6) is
obtained by means of a singular value decomposition (SVD) of the dataset Y, where the first
r \ll N columns of the left singular eigenvectors are the required POD basis. We refer to [18]
for a complete description of the POD method. We also mention that the POD method is
equivalent to Principal Component Analysis or Karhunen--Lo\'eve expansion in other contexts
(see, e.g., [8, 9]).

The exact DMD algorithm proceeds as follows [16]: first, we collect data Y,Y\prime as in (2.3)
and compute the reduced, or economy, SVD of Y:

Y = U\Sigma VT .

We note that the use of the economy SVD is suggested since the matrices Y,Y\prime \in \BbbR n\times n\mathrm{f}

with N \gg n\mathrm{f} and that the economy U \in \BbbR N\times r is sufficient to provide the same approximation
of the regular SVD given the limited amount of snapshots. Furthermore, the DMD typically
makes use of low-rank structure so that the total number of modes, r \ll N , allows for
dimensionality reduction of the dynamical system. Then, we compute the least-squares fit A
that satisfies Y\prime = AY and project onto the POD modes U. Specifically, the Moore--Penrose
pseudoinverse of Y allows us to compute A = Y\prime Y\dagger , where the Moore--Penrose algorithm
provides the least-squares fitting procedure. In terms of its low-rank projection, this yields\widehat A = UTAU = UTY\prime V\Sigma  - 1,

and then we compute the eigendecomposition of \widehat A \in \BbbR r\times r:\widehat AW = W\Lambda ,

where \Lambda are the DMD eigenvalues. Finally, the DMD modes \Psi \mathrm{D}\mathrm{M}\mathrm{D} are given by

(2.7) \Psi \mathrm{D}\mathrm{M}\mathrm{D} = Y\prime V\Sigma  - 1W.

The algorithm is summarized in Algorithm 2.1.

Algorithm 2.1 Exact DMD.

Require: Snapshots \{ y(t0), . . . ,y(tn\mathrm{f}
)\} , time step \Delta t.

1: Set Y = [y(t0), . . . ,y(tn\mathrm{f} - 1)] and Y\prime = [y(t1), . . . ,y(tn\mathrm{f}
)].

2: Compute the reduced SVD of rank r of Y, Y = U\Sigma VT .
3: Define \widehat A := UTY\prime V\Sigma  - 1.
4: Compute eigenvalues and eigenvectors of \widehat AW = W\Lambda .
5: Set \Psi \mathrm{D}\mathrm{M}\mathrm{D} = \Lambda  - 1Y\prime V\Sigma  - 1W.
6: Set \omega i =

\mathrm{l}\mathrm{o}\mathrm{g}(\lambda i)
\Delta t for (2.2)

In Appendix A we provide a numerical experiment to show the effectiveness of the DMD
method. We compute the data from a nonlinear PDE, i.e., the viscous Burgers' equation.
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1376 A. ALLA, C. BALZOTTI, M. BRIANI, AND E. CRISTIANI

2.2. Wasserstein distance and optimal mass transfer problem. The notion of Wasser-
stein distance is strictly related to the Monge--Kantorovich optimal mass transfer problem
[17], which can be easily explained as follows: given a sandpile with mass distribution \rho \mathrm{i} and
a pit with equal volume and mass distribution \rho \mathrm{f}, find a way to minimize the cost of trans-
porting sand into the pit. The cost for moving mass depends on both the distance from the
point of origin to the point of arrival and the amount of mass moved along that path. We are
interested in minimizing this cost by finding the optimal path to transport the mass from the
initial to the final configuration.

Given two density functions \rho \mathrm{i}, \rho \mathrm{f} : \Omega \rightarrow \BbbR for some bounded \Omega \subset \BbbR n such that
\int 
\BbbR n \rho 

\mathrm{i} =\int 
\BbbR n \rho 

\mathrm{f}, we define the Lp-Wasserstein distance between \rho \mathrm{i} and \rho \mathrm{f} as

(2.8) Wp(\rho 
\mathrm{i}, \rho \mathrm{f}) =

\biggl( 
min
T\in \scrT 

\int 
\Omega 
c(\bfitxi , T (\bfitxi ))p \rho \mathrm{i}(\bfitxi )d\bfitxi 

\biggr) 1
p

,

where

\scrT :=

\Biggl\{ 
T : \Omega \rightarrow \Omega :

\int 
B
\rho \mathrm{f}(\bfitxi )d\bfitxi =

\int 
\{ \bfitxi :T (\bfitxi )\in B\} 

\rho \mathrm{i}(\bfitxi )d\bfitxi , \forall B \subset \Omega 

\Biggr\} 

and c : \Omega \times \Omega \rightarrow \BbbR is a given cost function, which defines the cost of transferring a unit mass
between any two points in \Omega . Note that \scrT is the set of all possible maps which transfer the
mass from one configuration to the other.

It is important to note here that we are not really interested in the actual value of the
Wasserstein distance Wp, instead we look for the optimal map T \ast which realizes the argmin
in (2.8), and represents the paths along which the mass is transferred.

2.3. Numerical approximation of the Wasserstein distance. A direct numerical approx-
imation of definition (2.8) is unfeasible, but a discrete approach is still possible. Indeed, we
can resort to classical problems (see Hitchcock's paper [7]) and methods (see, e.g., [12, sect.
6.4.1] and [14, Chap. 19]) to recast the original mass transfer problem into the framework of
linear programming (LP). We also refer to [4] for a recent application of this methodology to
traffic flow problems.

The idea consists in approximating the set \Omega with a structured grid with N square cells
C1, . . . , CN , as it is commonly done for the numerical approximation of PDEs. We denote
by \Delta x the length of each side of the cells. Then, we define a graph \scrG whose nodes coincide
with the centers of the N cells. The graph's edges are defined in such a way that each node
is directly connected to each other, including itself.

Introducing a numerical error (controlled by the parameter \Delta x), we are allowed to assume
that \forall j = 1, . . . , N all the mass distributed in the cell Cj is concentrated in its center, i.e.,
in a node of the graph. We come up with an initial mass m\mathrm{i}

j :=
\int 
Cj

\rho \mathrm{i}dx and a final mass

m\mathrm{f}
j :=

\int 
Cj

\rho \mathrm{f}dx for j = 1, . . . , N , distributed on the graph nodes. Now, we simply aim

at optimally rearranging the first mass into the second one moving it among the graph's
nodes.
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We denote by cjk the cost to transfer a unit mass from node j to node k, and by xjk the
(unknown) mass moving from node j to node k. The problem is then formulated as

minimize \scrH :=
N\sum 

j,k=1

cjkxjk

subject to \sum 
k

xjk = m\mathrm{i}
j \forall j,

\sum 
j

xjk = m\mathrm{f}
k \forall k, and xjk \geq 0.

Defining

x = (x11, x12, . . . , x1N , x21, . . . , x2N , . . . , xN1, . . . , xNN )\mathrm{T},

c = (c11, c12, . . . , c1N , c21, . . . , c2N , . . . , cN1, . . . , cNN )\mathrm{T},

b = (m\mathrm{i}
1, . . . ,m

\mathrm{i}
N ,m\mathrm{f}

1, . . . ,m
\mathrm{f}
N )\mathrm{T},

and the 2N \times N2 matrix

M =

\left[            

1N 0 0 . . . 0

0 1N 0 . . . 0

0 0 1N . . . 0

...
...

...
. . .

...

0 0 0 . . . 1N

IN IN IN IN IN

\right]            
,

where IN is the N \times N identity matrix and

1N = (1 1 . . . 1)\underbrace{}  \underbrace{}  
N \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

,

our problem is written as a standard LP problem:

(2.9)
min c\mathrm{T}x,

subject to Mx = b,
x \geq 0.

The result of the algorithm is a vector x\ast := argmin c\mathrm{T}x whose elements x\ast jk represent how
much mass moves from node j to node k employing the minimum-cost mass rearrangement.

Remark 2.1. The dimension of the LP problem (2.9) is given by the dimensions of the
matrix/vectors involved:

dimx = dim c = N2, dimb = 2N, dimM = 2N3.

Remark 2.2. Hereafter we will refer to problem (2.9) as global, in order to stress the fact
that it is possible to move the mass from and to any node of the graph.

3. Coupling DMD and optimal mass transfer problem. In this section we describe how
we can drastically reduce the size of the LP problem (2.9) by using the DMD method. The
resulting algorithm will allow us to study the mass transfer problem on large domains.
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3.1. Main idea. The large size of the LP problem (2.9), stressed in Remark 2.1, mainly
comes from the fact that the mass is allowed to be transferred from any graph node to any
other graph node. However physical constraints prevent this from happening: assuming that
the maximal velocity of the mass is V\mathrm{m}\mathrm{a}\mathrm{x} and denoting by \Delta t the time frame from one snapshot
to the following one, the maximal distance traveled is V\mathrm{m}\mathrm{a}\mathrm{x}\Delta t.

In order to reduce the size of the LP problem (2.9), we restrict the set of all possible
movements trajectories. The ideal time frame \delta t of the snapshots would be the one which
guarantees that the CFL-like condition (see, e.g., [11, Chap. 14])

(3.1) V\mathrm{m}\mathrm{a}\mathrm{x}\delta t \leq \Delta x

holds true. Indeed, under condition (3.1) themass is allowed to move only towards the adjacent
cells or not move at all.

Consider now a generic set of mass distributions \scrX = \{ m(t0), . . . ,m(tn\mathrm{f}
)\} , where tj = j\Delta t,

j = 0, . . . , n\mathrm{f}, and \Delta t is the time frame of the snapshots of the set \scrX . A priori, the time step
\Delta t does not necessarily satisfy condition (3.1). In particular, a large distance in time between
the snapshots means that there is not enough information for reducing the set of possible
movements. However, with the DMD we are able to reconstruct the state of the system at
any time instance, even if it is not provided in the original dataset. The coupling of DMD
and of the optimal mass transfer problem is done in this order:

(i) We first fix \delta t < \Delta t such that it satisfies condition (3.1) and then we reconstruct the
solution for each \widetilde tj = j\delta t via DMD, using Algorithm 2.1. The new set of snapshots

we work with is \widetilde \scrX = \{ m(\widetilde t0), . . . ,m(\widetilde t \widetilde n\mathrm{f}
)\} , where m(\widetilde tj) is computed from (2.2), j =

0, . . . , \widetilde n\mathrm{f}. We observe that \widetilde n\mathrm{f} > n\mathrm{f}.
(ii) We recover the flows from the new set \widetilde \scrX by means of an approximation of the Wasser-

stein distance similar to the one done in section 2.3, but with reduced size, as described
in detail below. Note that, since \widetilde n\mathrm{f} > n\mathrm{f}, we have to solve more LP problems with
respect to the global approach, but, despite this, we will get advantages by using this
new approach.

Let us denote by d the maximum number of neighbors per cell. The new unknown \widetilde xjk,
corresponding to the mass to be moved from node j to node k, is defined only if j and k are
adjacent or j is equal to k. Analogously we define the cost function \widetilde cjk. We denote by \widetilde x the
vector of the unknowns and by \widetilde c the vector associated with the cost function. We introduce the
vector s whose components are indexes of nodes. The first components are the indexes of the
nodes adjacent to the node 1, then those adjacent to the node 2, and so on until the node N .
Vectors \widetilde x and \widetilde c are ordered similarly to s. Since the mass can move only towards a maximum
of d nodes, the dimensions of \widetilde x and \widetilde c are lower than or equal to dN . We introduce the matrix

\widetilde M =

\left[            

1r1 0 0 . . . 0

0 1r2 0 . . . 0

0 0 1r3 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1rN\widetilde D

\right]            
,
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where

1ri = (1 1 . . . 1)\underbrace{}  \underbrace{}  
ri \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

with ri the number of adjacent nodes for each node i, ri \leq d, and \widetilde Dij = 1 if the jth element

of s is equal to i, otherwise \widetilde Dij = 0. Defining the vector \widetilde b = (m\mathrm{i}
1, . . . ,m

\mathrm{i}
N ,m\mathrm{f}

1, . . . ,m
\mathrm{f}
N )\mathrm{T} the

LP problem becomes

(3.2)

min \widetilde c\mathrm{T}\widetilde x,
subject to \widetilde M\widetilde x = \widetilde b,\widetilde x \geq 0.

Remark 3.1. The dimension of the LP problem (3.2) is given by the dimensions of the
matrix/vectors involved:

dim \widetilde x = dim\widetilde c \leq dN, dim \widetilde b = 2N, dim\widetilde M \leq 2dN2.

Remark 3.2. Hereafter we will refer to problem (3.2) as local, in order to stress the fact
that it is only possible to move the mass from and to adjacent nodes of the graph.

3.2. A toy example for the complete algorithm: The advection equation. In this test
we propose an example for the complete algorithm described in subsection 3.1. Let us consider
the advection equation,

(3.3)

\left\{     
\partial tu(x, t) + v \cdot \nabla u(x, t) = 0, x \in \Omega , t \in [0, T ],

u(x, t) = 0, x \in \partial \Omega ,

u(x, 0) = u0(x), x \in \Omega ,

with x = (x1, x2), \Omega = [ - 2, 2]\times [ - 2, 2], u0(x) = max(0.5 - x21  - x22, 0), and constant velocity
v = (0.5, 0.5). It is well known that the analytical solution of (3.3) is u(x, t) = u0(x  - vt)
provided that we set T small enough to have inactive boundary conditions, as is the case here.
Hereafter we denote by reference solution the analytical solution u of (3.3). In Figure 1 we
show the plot of the reference solution at times t = 0 and t = 2.

Starting from some snapshots of the solution, we aim at reconstructing the velocity field
driving the dynamics, i.e., the vector v = (0.5, 0.5). In doing this, we will also compare the
global and the local problem in terms of CPU time; see (2.9) and (3.2), respectively.

We choose a time step \delta t, and we collect snapshots with a larger temporal step size
\Delta t = \kappa \delta t with \kappa > 1 and we reconstruct the solution via the DMD method. We note that
here the snapshots are computed from the analytical solution of (3.3). In particular, we work
on a grid 40 \times 40 and we choose T = 2, \Delta x = 0.1, \delta t = 0.05, and \Delta t = 2 \delta t. We observe
that, since V\mathrm{m}\mathrm{a}\mathrm{x} = \| v\| =

\surd 
2/2, this choice of \delta t fullfills the condition (3.1). The number of

snapshots is 40 and the rank r in Algorithm 2.1 for the DMD reconstruction is 20. Moreover
we identify the nodes of the graph \scrG of the numerical approximation of Wasserstein distance
with the cells of the grid.
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Figure 1. Reference solution of (3.3) at time t = 0 on the left and time t = 2 on the right.

Cost function

t0

t1

(a) Three small movements

t0

t1

(b) One large movement

Cost function

t0

t1

(a) Three small movements

t0

t1

(b) One large movement
Figure 2. Three small movements versus one large movement.

Choice of the cost function. Since the cost function is used to figure out the ``price to pay""
for moving the mass from a node of the graph to another one, the most intuitive definition
of c is the Euclidean distance in \BbbR 2. This choice was proved to be unsuitable for the global
problem; see [2]. Indeed, since the global algorithm allows any movements between the nodes
of the graph, using the Euclidean distance for the function c we loose the uniqueness of the
optimal transfer map T \ast . To see this let us assume that we have to move three unit masses
one to the right. In the picture on the left of Figure 2 we move the three unit masses of
one to the right while in the picture on the right we move only the first mass of three to the
right. The Wasserstein distance between the two configuration is clearly the same and equal
to three.

The solution proposed in [2] to fix this issue was to force the minimization algorithm to
select primarly the small movements penalizing the large ones. To get this, the cost function
was defined as

(3.4) c(\bfitxi 1, \bfitxi 2) = \| \bfitxi 1  - \bfitxi 2\| 1+\varepsilon 
\BbbR 2 ,

where \bfitxi 1 and \bfitxi 2 are the coordinates of the nodes of the graph and \varepsilon > 0 is a small parameter
which accounts for the penalization.

In Figure 3 we show the level sets of the solution to (3.3) together with some arrows
indicating the reconstructed velocity field v. More precisely, on the left column of the figure
we show the results obtained with the local algorithm (3.2), on the center with the global
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(a) Local approach with reference
solution.

(b) Global approach with reference
solution and Euclidean distance.

(c) Global approach with reference
solution and cost defined in (3.4).

(d) Local approach with DMD so-
lution.

(e) Global approach with DMD so-
lution and Euclidean distance.

(f) Global approach with DMD so-
lution and cost defined in (3.4).

Figure 3. Reconstructed flows between t1 = 0.725 and t2 = t1 + \delta t superimposed to the level sets of the
solution to (3.3) at t2. Left column: local algorithm. Central column: global algorithm with c equal to the
Euclidean distance. Right column: global algorithm with c defined in (3.4). Top row: the reference solution
to (3.3) is used for computation. Bottom row: the DMD reconstruction of the solution to (3.3) is used for
computation.

algorithm with Euclidean distance, and on the right with the global algorithm with the cost
function defined in (3.4) (with \varepsilon = 0.1). Similarly, the panels on the top show the results
obtained with the reference solution whereas the panels on the bottom those obtained with
the DMD solution.

The local algorithm and the global one with the correction in (3.4) are able to reconstruct
the velocity field v = (0.5, 0.5) with accurate approximation. The global algorithm with
Euclidean distance, instead, is less precise, since the optimal flow does not correspond to the
velocity field. Moreover, the algorithm based on the DMD reconstruction of the solution intro-
duces small oscillations in the solution to (3.3). This is expected in such hyperbolic problems
since the decay of the singular values of the dataset is very slow and the initial condition is
nonsmooth. However, such oscillations do not have an effect in the reconstruction of the flow.

To further validate our approach we compute the numerical error of the proposed algo-
rithm. Since the results obtained with the global algorithm (2.9) with the Euclidean distance
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Table 1
Comparison of the errors defined in (3.5).

N \Delta x \Delta t EG EL

20 0.20 0.100 0.185 0.030

30 0.13 0.067 0.159 0.028

40 0.10 0.050 0.122 0.020

Table 2
Computational time.

N Global exact Global DMD Local exact Local DMD

20 18.10 s 18.89 s 0.28 s 0.36 s
30 11 min 11 min 0.93 s 1.41 s
40 3 h 6 min 3 h 7 min 2.40 s 4.85 s

as cost function are the least accurate, we focus only on the other two approaches. For each
time step tn = n\delta t we define x\ast 

E(tn) and \widetilde x\ast 
E(tn) as the solutions to the LP problems (2.9)

and (3.2), respectively, at time tn, when the known terms b(tn) and \widetilde b(tn) are chosen as the
reference solution to (3.3) at time tn. Analogously, x\ast 

D and \widetilde x\ast 
D are the solution when the

known terms are obtained with the DMD method. The vectors x\ast 
E(tn), \widetilde x\ast 

E(t
n), x\ast 

D(t
n), and\widetilde x\ast 

D(tn) for n = 1, . . . , \lfloor T
\delta t\rfloor + 1 are finally collected as the columns of the matrices X\ast 

E ,
\widetilde X\ast 
E ,

X\ast 
D, and

\widetilde X\ast 
D, respectively. We define the errors

(3.5) EG :=
\| X\ast 

E  - X\ast 
D\| F\bigm\| \bigm\| X\ast 

E

\bigm\| \bigm\| 
F

, EL :=

\bigm\| \bigm\| \bigm\| \widetilde X\ast 
E  - \widetilde X\ast 

D

\bigm\| \bigm\| \bigm\| 
F\bigm\| \bigm\| \bigm\| \widetilde X\ast 

E

\bigm\| \bigm\| \bigm\| 
F

,

where \| \cdot \| F is the Frobenius norm. In Table 1 we compare the errors defined in (3.5) obtained
from the simulations on a grid with N \times N nodes for N = 20, 30, and 40. As we can see from
the table, increasing the number of nodes we reduce the space step \Delta x = 4/N and the time
step \Delta t = \Delta x/2 and we obtain the decrease of the error between the reference solution and the
DMD reconstruction. Moreover, the error obtained with the local algorithm is significantly
smaller than the one obtained with the global approach.

Finally, in Table 2 we compare the computational time between the global approach (2.9),
with the cost function as in (3.4), and the local approach (3.2) with respect to the nodes of the
graph. We observe that the local algorithm is always faster than the global one. The difference
between the two approaches becomes more relevant when we refine the grid by increasing the
number of nodes, and thus the number of time steps. Specifically, for a 40\times 40 grid, the local
algorithm required a few seconds whereas the global one more than three hours.

4. Application to real mobile phone data. In this section we focus on a specific ap-
plication of the proposed approach. The real dataset gives information about the spatial
distribution of people in a large populated area. The goal is to understand the travel flows of
people, focusing in particular on recurring patterns and daily flows of commuters.

4.1. Dataset. TIM provides estimates of mobile phones presence in a given area in raster
form: the area under analysis is split into a number of elementary territory units (ETUs)
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Figure 4. 3 dimensional plot of the number of TIM users in each ETU of Milan's province on April 18, 2017.

of the same size (about 130 \times 140 m2 in urban areas). The estimation algorithm does not
singularly recognize users and does not track them using GPS. It simply counts the number
of phones attached to network nodes and, knowing the location and radio coverage of the
nodes, estimates the number of TIM users within each ETU at any time. TIM has now a
market share of 30\% with about 29.4 million mobile lines in Italy (AGCOM, Osservatorio
sulle comunicazioni 2/2017).

The data we considered refer to the area of the province of Milan (Italy), which is divided in
198,779 ETUs, distributed in a rectangular 389 \times 511 grid. Data span six months (February,
March and April 2016 and 2017). The entire period is divided into time intervals of 15
minutes; therefore, we have 96 datums per day per ETU in total. In Figure 4 we graphically
represent presence data at a fixed time. We observe that the peak of presence is located in
correspondence with the Milan city area. Figure 5 shows the presences in the province of
Milan in a typical working day in the left panel. The curve in the image decreases during the
night, it increases in the daytime and decreases again in the evening. These variations are due
to two main reasons: first, the arrival to and departure from Milan's province of visitors and
commuters. Second, the fact that when a mobile phone is switched off or is not communicating
for more than six hours, its localization is lost. The presence value that most represents the
population of the province is observed around 9 pm., when an equilibrium between traveling
and phone usage is reached. This value changes between working days and weekends, but it is
always on the order of 1.3\times 106. On the right panel of Figure 5 we show the trend of presence
data during April 2017. We can observe a cyclical behavior: in the working days the number
of presences in the province is significantly higher than during the weekends. It is interesting
to note the presence of two low-density periods on April 15--18 and on April 22--26, 2017,
created, respectively, by Easter and the long weekend for Italy's Liberation Day holiday.

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 1

51
.1

00
.1

01
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1384 A. ALLA, C. BALZOTTI, M. BRIANI, AND E. CRISTIANI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

1280000

1300000

1320000

1340000

1360000

1380000

1400000

1420000

1440000

Pr
es

en
ce

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 
Day

 900000

1000000

1100000

1200000

1300000

1400000

1500000

Pr
es

en
ce

s

Figure 5. Trend of presences in the province of Milan during a typical working day (left). Trend of presences
in the province of Milan during April 2017 (right).

4.2. DMD approach on TIM data. As explained in section 2.1, we can reconstruct the
presence data in each cell at any time. We denote by m(t\mathrm{i}) \in \BbbR N the vector containing the
number of people present in the N cells at a certain quarter of an hour and by m(t\mathrm{i}+15min) \in 
\BbbR N the same quantities at the consecutive time step. Applying the DMD method we are able
to calculate m(t) \in \BbbR N for any t \in [t\mathrm{i}, t\mathrm{i} + 15min]; see (2.2). We also note that DMD can be
applied to the higher dimensional dataset through randomized methods as explained in [1].

To validate the DMD approach on the TIM dataset we study the daily error using only
half of the data at our disposal in the DMD reconstruction. More precisely, we denote by
P\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a} the matrix whose columns correspond to the real data of presences stored every 15
minutes. Then, we reconstruct the data of presences every minute with the DMD algorithm,
using snapshots every 30 minutes. In other words, we exploit only one column out of two of
P\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a} to build the matrix \widetilde PDMD, which collects the reconstructed data every minute. Since a
day contains 96 quarters of an hour and 1440 minutes, P\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a} is a 96\times N matrix, while \widetilde PDMD

is a 1440 \times N matrix. Finally, to compare the real data with the DMD reconstruction, we
extract from \widetilde PDMD the rows corresponding to the original interval of 15 minutes into the
matrix \widetilde P\mathrm{D}\mathrm{M}\mathrm{D}, of dimensions 96\times N , and then we define the error as

(4.1) E =

\bigm\| \bigm\| \bigm\| P\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}  - \widetilde P\mathrm{D}\mathrm{M}\mathrm{D}
\bigm\| \bigm\| \bigm\| 
F

\| P\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{a}\| F
.

In Figure 6 we show the daily error (4.1) for an entire month of data in the whole area of the
province of Milan. The daily error is of order 10 - 2, which certifies the accuracy of the DMD
method.

4.3. Understanding human mobility flows. Following the approach described in section 3,
we define the graph \scrG by exploiting the subdivision of the area of the province of Milan (Italy)
into ETUs; we identify the N nodes of the graph with the corresponding center of the ETUs,
ordered from left to right and from top to bottom. The result is a rectangular graph \scrG divided
into NR rows and NC columns (N = NR \times NC). The mass mj(tn) is defined as the average
number of presences in the node j at time tn = n 15min.
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Figure 6. Daily error defined in (4.1) where DMD has been computed with r = 95 in step 2 of Algorithm 2.1.

Table 3
Comparison between dimensions of matrices and vectors for the two methods.

Algorithm Vectors dimension Matrix dimension

Global N2 2N3

Local \widetilde N (< 9N) 2N \times \widetilde N (< 18N2)

Let us assume that V\mathrm{m}\mathrm{a}\mathrm{x} in (3.1) is equal to 50 km/h. Since the dimensions of the ETUs
is around 150 m, to apply the DMD we fix the new time step \delta t equal to 10 seconds. With
this choice we assume that people can move only towards the eight adjacent nodes of the
rectangular graph, or not move at all. We observe that the mass in the nodes on the four
corners of the graph can move only towards four directions (adjacent nodes or no movement),
while the mass along the boundaries can move only towards six directions. In this way, the
total number of possible movements between the cells is given by

(4.2) \widetilde N = 4 \cdot 4\underbrace{}  \underbrace{}  
\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{s}

+6 \cdot 2 (NR +NC  - 4)\underbrace{}  \underbrace{}  
\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}

+9 (N  - 4 - 2 (NR +NC  - 4))\underbrace{}  \underbrace{}  
\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{n}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}

< 9N.

The vectors \widetilde x and \widetilde c associated with the unknown moving mass and with the cost function
have length \widetilde N , while the matrix \widetilde M of the LP problem (3.2) has dimension 2N\times \widetilde N . In Table 3,
we compare the dimensions of the vectors and the matrices of the two different LP problems:
it is clear that the computational time to solve problem (3.2) is significantly reduced with
respect to problem (2.9).

Choice of the cost function c. Since the ETUs are rectangles of length \ell x = 130 m and
\ell y = 140 m, we define the cost function cjk for the local algorithm as follows:

cjk =

\left\{           
0 if j = k or j and k are not adjacent,

\ell x if j and k are horizontally adjacent,

\ell y if j and k are vertically adjacent,\sqrt{} 
\ell 2x + \ell 2y if j and k are diagonally adjacent.

For the global approach, we use the cost function defined in (3.4) with \varepsilon = 0.1.D
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To sum up, in order to solve the mass transfer problem for a whole day using snapshots
taken every 15 minutes (real data) we have to solve 96 global LP problems (2.9), whereas
with the DMD algorithm we have to solve 8640 local LP problems (3.2). As we will see in
the following section, despite the larger number of LP problems, the local approach is more
convenient than the global one.

Remark 4.1. The Wasserstein distance is defined between two distributions of equal mass
(see (2.8)). In our case the conservation of mass between two consecutive snapshots is not
guaranteed. Let us consider a couple of snapshots with different total mass

\sum 
j m

0
j \not =

\sum 
j m

1
j .

To correctly apply the algorithms for the identification of flows, we compute the mass in excess
between the two snapshots and then we uniformly distribute it in all the nodes of the graph
with lower mass. A more sophisticated approach could be the one suggested in [10], where a
definition of Wasserstein distance between two distributions with different mass is proposed.

4.4. Numerical results. In this section we show the results obtained with the local al-
gorithm (3.2) to study the flows of commuters and the influence of great events on human
mobility. In both cases the rank r in step 2 of Algorithm 2.1, used for the construction of
the DMD solution, is 95. The flows are represented by arrows; we draw only those which cor-
respond to the most significant movements, and we associate a darker color with the arrows
corresponding to a larger movement of people. For graphical purposes, in the following plots
we aggregate 6 time steps \delta t to show 1-minute mass transport.

4.4.1. Flows of commuters. In the following simulations we consider the area of the
Province of Milan during a generic working day. Milan is one of the biggest Italian cities and
it attracts many workers from outside. The city of Milan is located in the right part of the
province, therefore, we mainly see movements from/to the left part of the analyzed area. In
the top panel of Figure 7 we show the morning flows of a working day: we clearly see that the
arrows are directed towards the city of Milan. In particular, we zoom in on the arrows which
overlap the roads heading to Milan. In the bottom panel of Figure 7 we show the opposite
phenomenon: in the evening people go away from work to come back home inside the Province
of Milan.

CPU times. Considering data for a 6 hours frame on an area of 144\times 240 ETUs the local
algorithm requires 144 hours of CPU time and works with 360 snapshots. The global approach
(2.9) is not able to analyze such an area, since the matrix M in (2.9) has a computationally
unmanageable dimension.

4.4.2. Flows influenced by a great event. In this test we show how the algorithm is able
to capture the way a big event influences human flows. The event we have considered is the
exhibition of the Salone del Mobile, held every April at the Fiera Milano exhibition center in
Rho, near Milan. We analyze a square area of 31\times 31 ETUs centered around Fiera Milano. In
the left panel of Figure 8 we show the morning fluxes directed to the exhibition area whereas
in the right panel we show the evening flows directed from the exhibition area to the outside.

CPU times. For a simulation of 18 hours, from 06:00 to 23:45, on an area of 31\times 31 ETUs,
the local algorithm requires 6 minutes of CPU time while the global approach requires 30
minutes. Furthermore, we observe that the local algorithm works with 1065 snapshots of
data, whereas the global one works with 266 snapshots.
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Figure 7. Flows of commuters during the morning (09:00-09:01) of a generic working day (top). Flows of
commuters during the evening (18:00-18:01) of a generic working day (bottom).

5. Conclusions. In this paper we have proposed an efficient method to solve an inverse
mass transfer problem, consisting in recovering the dynamics underlying the mass displace-
ment. The proposed algorithm prevents having to handle large displacements of the mass, thus
saving CPU time and memory allocation with respect to other recently proposed solutions.

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 1

51
.1

00
.1

01
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1388 A. ALLA, C. BALZOTTI, M. BRIANI, AND E. CRISTIANI

Figure 8. Main flows directed to the exhibition area in the morning (09:45-09:46) (left). Main flows from
the exhibition area in the evening (18:00-18:01) (right).

The application of the methodology to a real dataset describing the movement of people
was also investigated. It is useful to note here that the applicability of the Wasserstein-based
methodology was not at all obvious, since it is based on assumptions which are not totally
fulfilled. Indeed, the choice of the cost function c does not take into account the fact that
people move mainly along roads, are stopped by obstacles, buildings, etc., and in general
are not free to move in all directions. Moreover, and most important, the computation of the
Wasserstein distance stems from a global optimization problem in which the mass is considered
as a whole. In other words, the optimal transport map T \ast is found by minimizing the cost
of the displacement of the whole crowd, without any distinction among people, and with no
regards about individual targets. Despite this, the results we have obtained (see especially
those in Figures 7 and 8) are exactly as one can expect, meaning that the method is, overall,
robust enough to work well even if the constitutive assumptions are not totally fulfilled.

Appendix A. The DMD for the viscous Burgers' equation. Here we propose a numerical
experiment using data generated by the 2 dimensional viscous Burgers' equation:

(A.1)

\left\{     
\partial ty  - \varepsilon \Delta y + y(\partial x1y + \partial x2y) = 0, x \in \Omega , t \in [0, T ],

y(x, t) = 0, x \in \partial \Omega ,

y(x, 0) = sin(\pi x1) sin(\pi x2), x \in \Omega ,

with x = (x1, x2), \Omega = [0, 1] \times [0, 1], T = 1, and \varepsilon = 0.01. The numerical approximation
of (A.1) has been carried out by a finite difference method on a square grid with N = 1600
nodes, using an adaptive Runge--Kutta method for the time integration with temporal step
size \Delta t > 0. We refer to [11] for further details on the numerical method. In what follows,
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Figure 9. Top: reference solution for Burgers' equation at time t = 0.4875 (left) and t = 0.9875 (right).
Bottom: absolute difference between reference solution and DMD reconstruction with data \Delta t = 0.1 at time
t = 0.4875 (left) and t = 0.9875 (right).

since we do not know the analytical solution of the equation, we consider as the reference
solution of (A.1) its numerical approximation with \Delta t = 0.0125.

To show how DMD reconstructs the model, we consider as dataset \scrX the numerical ap-
proximation of (A.1) for the following temporal step sizes \Delta t = \{ 0.1, 0.05, 0.025, 0.0125\} with
snapshots matrices of dimension N \times 11, N \times 21, N \times 41, N \times 81, respectively. Once the snap-
shots have been computed we apply Algorithm 2.1 to reconstruct the solution corresponding to
a fixed \delta t = 0.0125. Here, we aim at testing the capability of the DMD method to approximate
the dataset for the missing information.

In Figure 9, we show the reference solution of (A.1) in the top row and the absolute
difference between the reference solution and the reconstructed one with DMD in the bottom
row for two time instances. We note that the dataset for the DMD reconstruction corresponds
to the solution of (A.1) with \Delta t = 0.1.

Then, in Figure 10 we show the relative error between the DMD approximation and the
reference solution of (A.1) as follows:

(A.2) EDMD :=

\bigm\| \bigm\| YR  - YDMD
\bigm\| \bigm\| 
F

\| YR\| F
, \widehat EDMD(t) :=

\bigm\| \bigm\| yR(t) - yDMD(t)
\bigm\| \bigm\| 
2

\| yR(t)\| 2
,

where yR(t) is the reference solution and yDMD(t) is its DMD approximation. The notation
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Figure 10. Error analysis of the DMD reconstruction with a reference solution computed with \Delta t = 0.0125
and dataset corresponding to \Delta t = \{ 0.1, 0.05, 0.025, 0.0125\} as in the x-axis using EDMD in (A.2) (left),

relative error \widehat EDMD(t) in (A.2) for each time instance for the DMD reconstruction with \Delta t = \{ 0.1, 0.05, 0.025\} 
(middle), and singular values of the snapshots matrix with \Delta t = 0.0125 together with the error behavior EDMD

for different rank (right).

YR,YDMD refers to the matrices where each column contains the reference solution and its
DMD approximation, respectively, for different time instances.

It is clear that the more information on the system, e.g., number of snapshots, the better
the error behavior for the DMD solution (see left panel in Figure 10). However, we can
already obtain accurate solutions with a poor dataset. In the middle panel of Figure 10 we
show the error of the model for each time instance for the dataset corresponding to \Delta t =
\{ 0.1, 0.05, 0.025\} using \widehat EDMD(t) defined in (A.2). We note that DMD behaves very well for
time instances provided in the snapshot set. This is to show that DMD is able to reconstruct
accurately the solution for missing information. In this example the rank r in the DMD
method is 9. Finally, we would like to emphasize that, although the DMD model is linear, it
works even for nonlinear problem as, e.g., (A.1). For the sake of completeness we also show
in the right panel of Figure 10 the decay of error EDMD in (A.2) modifying the rank r in the
DMD approximation.

As expected the error decays as the rank increases. The singular values of the snapshots
set are also in the picture.
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