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Abstract: We present a numerical approximation for differential games with state constraints.
The scheme is based on dynamic programming and on the discretization of the Isaacs equation
which describes the value function of the game. Once the approximate value function has been
computed we can construct a numerical synthesis of feedback controls in order to reconstruct
the corresponding optimal trajectories. Some numerical tests are presented and discussed.

1. INTRODUCTION

In this paper we present a numerical approximation
scheme for general differential games with state con-
straints. In fact, we want to extend our approach for 2-
player pursuit-evasion games with state constraints pre-
sented in [13] to more general situations where the dy-
namics is coupled and the effect of the strategies chosen
by every player affects all the components (a more precise
description of the dynamics will be presented in Section
2). The scheme is based on the dynamic programming
approach and derives from a natural generalization of
the unconstrained approximation scheme (see the survey
papers [5, 14] for a general introduction). Unfortunately,
we are not able to give a proof of convergence for our algo-
rithm due to the fact that a precise definition of viscosity
solution for the general constrained case is still missing.
Our contribution here is mainly at the experimental and
numerical level. However, we will show (in Section 3) some
interesting examples where our algorithm is able to build
a solution of the Isaacs equations and the corresponding
optimal trajectories for the two players. The qualitative
behaviour of the optimal strategies looks rather accurate
and this motivates an additional effort to analyze the
problem and prove a convergence theorem. In order to set
our paper into perspective, note that in [5] the convergence
of the fully-discrete solution to the solution of the contin-
uous problem was proved in the free (i.e. unconstrained)
case, but this result can not be directly extended to the
constrained case. In [8] a convergence result is proved for
constrained control problems, but it strictly relies on the
fact that the time-discrete value function is continuous so
we can not apply the same ideas here.
To deal with generalized differential games, we adapt to
the discrete problem the definitions of admissible controls
presented in [17] since they are not restricted to pursuit-
evasion games, i.e. games where each player controls only
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his own dynamics. It should be noted that very few results
on constrained differential games are available although
several interesting problems with state constraints have
been studied in the literature by Isaacs [16] and Breakwell
in [7]. The aim of those contributions is mainly to compute
the optimal trajectories without solving the Isaacs equa-
tion. The main theoretical contributions to the characteri-
zation of the value function for state constrained problems
are, at our knowledge, the papers by Alziary de Roquefort
[1], Bardi et alia [6] and by Cardaliaguet, Quincampoix
and Saint-Pierre [9]. From the numerical point of view the
list of contributions is even shorter. The first examples of
computed optimal trajectories for pursuit-evasion games
have appeared in the work by Alziary de Roquefort [2].
In Bardi et al. [5] there are some interesting tests in
Ω ⊂ R

2 with state constraints and discontinuous value
function. In [3] the effect of the boundary conditions for the
free problem in R

4 is studied. In the paper Cardaliaguet,
Quincampoix and Saint-Pierre [10] a convergence result
for an approximation scheme is presented for a modified
viability kernel algorithm (see [11] for more details on this
approach). Finally, in [13] we have shown convergence of
our algorithm for pursuit-evasion games.

2. THEORETICAL BACKGROUND AND
NOTATIONS

Let us start introducing the problem and our notations. A
target set T ⊂ R

n is given and it is assumed to be closed.
The system describing the dynamics is

{

ẏ(t) = f(y(t), a(t), b(t)) , t > 0
y(0) = x

(1)

where y(t) is the state of the system, a(·) ∈ A and b(·) ∈ B
are respectively the controls of the first and the second
player, A and B being the sets of admissible controls
defined as

A = {a(·) : [0, +∞) → A, measurable} ,

B = {b(·) : [0, +∞) → B, measurable} ,
and A and B are given compact sets of R

m.
We will always assume that













f : R
n × A × B → R

n is continuous in the three
variables and there exists L > 0 such that
|f(y1, a, b) − f(y2, a, b)| ≤ L|y1 − y2|
for all y1, y2 ∈ R

n, a ∈ A, b ∈ B.

(2)

We will denote the solution of (1) by yx(t; a(·), b(·)). In our
generalized Pursuit-Evasion game the first player, called
the Pursuer and denoted by P , wants to drive the system
to T . The second player, called the Evader and denoted
by E, wants to drive the system away.
Note that in [13] we have proposed an algorithm for
the special case where y = (yP , yE) and f(y, a, b)) =
(fP (yP , a), fE(yE , b)). We deal with the natural extension
of the minimum time problem, so we define the payoff of
the game as the first time of arrival T (x) (if any) on the
target T for the solution trajectory of (1) starting at x.
Note that, as usual, we set T (x) = +∞ if the trajectory
will not reach the target.
As we said in the introduction we want to construct a
numerical approximation for differential games with state
constraints. This means that both the players have to
keep the system in a given bounded domain Q and satisfy
additional state constraints (if any) described by a set
C. We will denote by Ω ⊂ R

n the set describing all the
constraints (i.e. Ω ≡ Q∩C). The analysis of the continuous
model with state constraints via dynamic programming
techniques which is the basis for our approximation can be
found in [17, 6]. In order to simplify the presentation, we
will assume in the sequel that T ⊂ Q (this is not restrictive
since we can always redefine the target to be T ∩ Q).
Let us start giving the time-discrete and the corresponding
fully-discrete version of the differential game with state
constraints.

3. THE FULLY-DISCRETE APPROXIMATION
SCHEME

We will consider a discrete version of the dynamics based
on the Euler scheme, namely

{

yn+1 = yn + hf(yn, an, bn)
y0 = x

We denote by y(n; x, {an}, {bn}) its solution at time nh.
The state constraints require that y(n; x, {an}, {bn}) ∈ Ω
for all n ∈ N.
Let us define

Ah := {{an} : an ∈ A , for all n}

Bh := {{bn} : bn ∈ B , for all n}.
Adapting to the discrete case definitions in [17], we define
the set of admissible pairs of controls at x ∈ Ω

AP (x) ≡ {({an}, {bn}) ∈ Ah × Bh :
y(n; x, {an}, {bn}) ∈ Ω for all n}

and then the sets of admissible controls for each player

Ah
x ≡ {{an} ∈ Ah : ∃{bn} ∈ Bh|({an}, {bn}) ∈ AP (x)}

Bh
x ≡ {{bn} ∈ Bh : ∃{an} ∈ Ah|({an}, {bn}) ∈ AP (x)}.

We will always assume that Ah
x 6= ∅ (or equivalently

Bh
x 6= ∅) for all x ∈ Ω.

Let us also define the following subsets of A and B:

Ah(x, b) := {a ∈ A : x + hf(x, a, b) ∈ Ω} , x ∈ Ω

and

Bh(x, a) := {b ∈ B : x + hf(x, a, b) ∈ Ω} , x ∈ Ω.

We will also assume that
{

∃h0 > 0 : Ah(x, b) 6= ∅ and Bh(x, a) 6= ∅
∀(h, x) ∈ (0, h0] × Ω , a ∈ A , b ∈ B

(3)

Definition 1.
A strategy for the first player is a map αx : Bh

x → Ah
x. It

is nonanticipating if αx ∈ Γh
x, where

Γh
x := {αx : Bh

x → Ah
x : bn = b̃n for all n ≤ n′

implies αx[{bk}]n = αx[{b̃k}]n for all n ≤ n′}.
(4)

Let us define the reachable set as the set of starting points
from which the system can be driven to the target

Rh :=
{

x ∈ R
n : ∀{bn} ∈ Bh∃α ∈ Γh and n̄ ∈ N s.t.

y(n̄; x, α[{bn}], {bn}) ∈ T
}

. (5)

Then, we define for x ∈ Rh

nmin(x, {an}, {bn}) ≡ min{n ∈ N : y(n; x, {an}, {bn}) ∈ T }

and

nh(x, {an}, {bn}) ≡

{

nmin(x, {an}, {bn}) for x ∈ Rh

+∞ x /∈ Rh

We will consider for our approximation the discrete lower
value of the game, which is

Th(x) := inf
αx∈Γh

x

sup
{bn}∈Bh

x

hnh(x, αx[{bn}], {bn})

and its Kružkov transform

vh(x) := 1 − e−Th(x) , x ∈ Ω. (6)

Note that a similar construction can be done for the upper
value of the game. The Dynamic Programming Principle
(DPP) for differential games with state constraints (under
rather restrictive assumptions) is proved in [17] which also
gives a characterization of the lower and upper value of the
game in terms of the Isaacs equation. The discrete version
of the DPP should lead to the following characterization
of the time-discrete value function vh, For every x ∈ Ω\T

vh(x) = max
b∈B

min
a∈Ah(x,b)

{βvh(x + hf(x, a, b))} + 1 − β (7)

whereas
vh(x) = 0 for x ∈ T (8)

where β ≡ e−h. Unfortunately, the resulting Hamilton-
Jacobi-Isaacs equation (7)-(8) is not very general and does
not include simple games like pursuit-evasion games we
studied for example in [13]. In fact in [17] it is assumed
that the second player can choose his control in B without
any restriction due to the state constraints and then only
the first player has the responsibility to maintain the state
of the system in Ω. Although we can not prove at this
stage a more general DPP we try to solve numerically
the Hamilton-Jacobi-Isaacs equation in a more general
framework in which every player must consider the choice
of the other player in order to choose an admissible pairs
of controls (a, b). So we substitute (7) by the following
equation

vh(x) = max
b∈Bh(x)

min
a∈Ah(x,b)

{βvh(x + hf(x, a, b))} + 1 − β

(9)
where

Bh(x) := {b ∈ B : ∃a ∈ Ah(x, b)|x + hf(x, a, b) ∈ Ω}

for all x ∈ Ω. This choice seems to be reasonable and it
seems to be the right choice to solve differential games
with coupled dynamics as we will see in the next section.



In order to achieve the fully-discrete equation we build
a regular triangulation of Ω denoting by X the set of
its nodes xi, i = 1, . . . , N and by S the set of simplices
Sj , j ∈ J ≡ 1, . . . , L. V (S) will denote the set of the
vertices of a simplex S and the space discretization step
will be denoted by k where k := maxj{diam(Sj)}.
The fully-discrete approximation scheme is, for xi ∈
(Ω\T ) ∩ X ,

vk
h(xi) = max

b∈Bh(x)
min

a∈Ah(xi,b)

{

βvk
h(xi + hf(xi, a, b))

}

+ 1−β

(10)
whereas the homogeneous Dirichlet boundary condition
(8) becomes

vk
h(xi) = 0 , xi ∈ T ∩ X . (11)

The local reconstruction of the term vk
h(xi + hf(xi, a, b))

is obtained by linear interpolation, i.e.

vk
h(x) =

∑

j

λj(x)vk
h(xj) , where

0 ≤ λj(x) ≤ 1 ,
∑

j

λj(x) = 1 x ∈ Ω.
(12)

As in the unconstrained problem, the choice of linear
interpolation is not an obligation and it was made here
just to simplify the presentation.
Let us denote by W k the set

W k :=
{

w ∈ C(Ω) : ∇w(x) = constant for x ∈ Sj , j ∈ J
}

.

The proof of the following theorem can be obtained with
simple adaptations of the standard proof for the free fully-
discrete scheme (see e.g. [5]).

Theorem 1. The problem (10), (11) has a unique solution
vk

h ∈ W k such that vk
h : Ω → [0, 1].

Finally we note that the theorem of convergence of vk
h to

vh for k tends to 0 in [13] can be easily adapted to equation
(10) although it was first stated in the particular case of
pursuit-evasion games.

4. NUMERICAL EXPERIMENTS

In this section we present some numerical experiments for
pursuit-evasion games as well as for general differential
games. The code is written in C++ using OpenMP di-
rectives. The algorithm ran on an IBM system p5 575
equipped with 8 processors Power5 at 1.9 GHz and 32
GB RAM located at CASPUR (www.caspur.it).
We denote by N the number of nodes in each dimension. In
every case the controls a and b are chosen in the boundary
of the two-dimensional unit ball B(0, 1) plus the central
point (0, 0). We denote by Nc the number of admissible
directions/controls for each player.
We always solve the problem on a structured grid with
four-dimensional cells of volume ∆x1∆x2∆x3∆x4 and we
choose the (fictitious) time step h such that

‖hf(x, a, b)‖ ≤ min{∆x1, ∆x2, ∆x3, ∆x4}

for all x, a, b (so that the interpolation is made in the
neighboring cells of the considered point). We adopt

‖V (p+1) − V (p)‖∞ ≤ ε , ε > 0

as stopping criterion for the fixed point iteration V p+1 =
F (V p) (where Vi = vk

h(xi)). We denote by v(x) the ap-
proximate value function and by T (x) = − ln(1 − v(x))
the time needed to reach the target. In the following we

name ”CPU time” the sum of the times taken by the CPUs
and by ”wallclock time” the elapsed time.

Test 1 (Tag–Chase game)
In this test we consider two boys P and E running one
after the other in the same two-dimensional domain. The
real game is played in a square [−2, 2]2 so the problem is
set in Q = [−2, 2]4. The coordinates (x1, x2) represent the
position of the Pursuer and (x3, x4) represent the position
of the Evader. The Pursuer’s dynamics is

{

f1(x, a, b) = 2a1

f2(x, a, b) = 2a2
(13)

and the Evader’s dynamics is
{

f3(x, a, b) = b1

f4(x, a, b) = b2
if b2 ≥ 0 (14)

{

f3(x, a, b) = 3b1

f4(x, a, b) = 3b2
otherwise (15)

so the Evader can run faster than the Pursuer when he goes
down. We consider the state constraints due to boundary
of the square (players can not exit the admissible domain
Q) and, in addition, another constraint C ≡ {x ∈ R

4 :
x4 > x2} so that the Evader must remains above the
Pursuer. Although the dynamics is split in the sense that
the choice of a player does not affect the position of the
other, the state constraints are coupled and depend on the
global state of the system.
The numerical target is T = {(i, j, k, l) ∈ {1, . . . , N}4 : |i−
k| ≤ 1 and |j − l| ≤ 1} so the target is reached when the
capture occurs. We plot some flags on the approximate
optimal trajectories every some time steps. This allows to
follow the position of one player with respect to the other
during the game.
We choose ε = 10−3, N = 50 and Nc = 32 + 1. Con-
vergence was reached in 137 iterations. The CPU time
was 1d 01h 26m, the wallclock time was 3h 44m. Fig. 1
shows the optimal trajectory corresponding to the starting
point P = (−1.8,−1.9), E = (−1.5, 1.5). We compare
this solution with the solution of the problem in which
we removed the constraints x4 > x2 (see Fig. 2). It is
immediately seen that the behavior is completely different.
If the Evader is constrained above the Pursuer, he goes
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Fig. 1. Optimal trajectories for Test 1. Constrained case
with x4 > x2.

a little bit down just to increase his velocity but after a
while he is pushed to the north boundary by the Pursuer.
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Fig. 2. Optimal trajectories for Test 1. Constrained case
without the requirement x4 > x2

In absence of that constraints the Evader waits until the
Pursuer approaches the north boundary and then he goes
down faster than the Pursuer so he is captured only when
he touches the south boundary.

Test 2
In this test we consider a completely coupled dynamics. A
ball is free to move on the plane [−5, 5]2. We indicate the
position of the ball by (x1, x2) and its velocity by (x3, x4).
The two players can move the ball applying a force which
depends on (x1, x2). The first player wants to steer the
ball to the target T = {(x1, x2) | x1 ≥ 4, x2 ≥ 0} while the
second player wants to steer the ball away. The dynamics
is

{

f1(x, a, b) = x3

f2(x, a, b) = x4
(16)

f3(x, a, b) =

{

4a1 + b1 x1 ≤ 0
2a1 + 3b1 x2 > 0

(17)

f4(x, a, b) =

{

4a2 + b2 x1 ≤ 0
2a2 + 3b2 x2 > 0

(18)

This means that the first player can completely control
the ball in the left side of the domain but not in the right
side. We choose ε = 10−3, N = 40 and Nc = 24 + 1.
Convergence was reached in 132 iterations. The CPU time
was 6h 14m, the wallclock time was 52m. Fig. 3 shows
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Fig. 3. Test 2. Value function T (x1, x2, 0, 0)

the value function T (x1, x2, 0, 0) (we fix the initial velocity
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Fig. 4. Test 2. An optimal trajectory

equal to (0, 0)). It is immediately seen that if the ball starts
from the right-hand side the first player can not steer it
to the target so the optimal time T is +∞. Fig. 4 shows
an optimal trajectory corresponding to the starting point
(0, 0, 0, 0). We can see that at the beginning the first player
moves the ball toward the left side of the domain in such
a way he can control and accelerate the ball. After that,
he pushes the ball toward the target. When the ball enters
the right side of the domain the second player tries to slow
down the ball and to move it away but at this point the
velocity of the ball is too high so it can reach the target
despite the second player.

Test 3
In this test we consider again a completely coupled dy-
namics. The aim is to stabilize a dynamical system. The
dynamics is











f1(x, a, b) = (−3+a1)x1

f2(x, a, b) = (−3+a2)x2

f3(x, a, b) = (−3+a1−2b1)x3

f4(x, a, b) = (−3+a2−2b2)x4

(19)

We choose ε = 10−3, N = 38 and Nc = 2 (ai,bi = ±1).
Convergence was reached in 36 iterations. Fig. 5 shows
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Fig. 5. Test 3. An optimal trajectory

an optimal trajectory corresponding to the starting point
(2, 2,−2,−2). We plotted the coordinates (x1, x2) and
(x3, x4) separately for the reader’s convenience (the first
is plotted by circles, the second by squares). We can see
that the two curves approach the origin in different time



due to the action of the second player which slows down
the evolution of the system.

5. CONCLUSION

We have proposed an approximation scheme for general
differential games with state constraints. According to the
numerical tests the numerical approximation gives an ap-
propriate qualitative description of the value function and
of the corresponding optimal trajectories. These results
push toward a further analysis in order to prove that
the approximate solution computed by the algorithm con-
verges, for h and k tending to 0, to the viscosity solution
of the Isaacs equation.
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