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Abstract We introduce a new Fast Marching method for the eikonal equation. The
method is based on the informations driven by characteristics and it is an improve-
ment with respect to the standard Fast Marching method sinceit accepts more than
one node at every iteration using a dynamic condition. We analyze the method and
present several tests on fronts evolving in the normal direction with variable veloci-
ties including cases where a change in topology occurs.

1 Introduction

The success of the level set method in the analysis and in the simulation of com-
plex interface problems is mainly due to its capability to handle the changes in
topology of the interfaces. The price to pay is the fact that we look for a function
u : IRn × [0,T ] → IR and we locate the frontΓt at timet just considering the 0-level
set ofu(x,t), so we add one extra dimension to the original problem which lives in
IRn.
The Fast Marching (FM) method has been proposed to cut down the computational
complexity of the level set method (see [7, 9] for the origin of the method and
[1, 2, 8] for some recent developments). It was developed forthe time-independent
eikonal equation {

c(x)|∇T (x)| = 1, x ∈ IRn\Ω0

T (x) = 0, x ∈ Γ0 = ∂Ω0
(1)

whereΩ0 is a closed bounded set andc(x) is Lipschitz continuous and strictly pos-
itive. The front is recovered as thet-level set of the minimal time functionT (x)
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which is the unique viscosity solution of (1). Note that the solutionu of the level set
method can be written asu(x,t) = T (x)− t, so (1) is related both to the evolution of
a front with velocityc(x) in the normal direction and to the minimum time problem
(see [3, 6]).

The FM method sets-up the computation in a narrow band near the front and
updates the narrow band in order to follow the evolution of the front at every time.
In this way it eliminates the extra dimension introduced by the model since at every
iteration the computation is performed in a neighborhood ofthe front,i.e. we work
on O(

√
N) nodes if the grid hasN nodes. Once a node exits the narrow band it is

accepted,i.e. it is no more computed in the following iterations. The FM method
accepts only one node at every iteration (the node with the minimal valueT ) to
guarantee that the evolution of the front is tracked correctly. However, in several sit-
uations one has the impression that the FM method can be improved and that it is not
needed to accept just one point at every iteration. For example, this is the case when
the initial configurationΩ0 is convex so that in the normal evolution of the front
there are neither a merging nor a crossing of characteristics. The main contribution
here is to modify the FM method based on the semi-Lagrangian approximation (see
[2, 3] for details) developing a new algorithm which acceptsseveral points provided
some local conditions are satisfied (see Section 2). In this way we drop the search
for the minimum valueat every iteration via a Min-Heap structure. We note that an-
other Group Marching algorithm has been proposed by Kim in [5] to speed up the
standard FM method based on the finite difference scheme. Ouralgorithm is differ-
ent in two respects. The first is that we use a different local rule for the computation
whereas the second is related to the condition which allows our method to accept
more nodes.

2 The Characteristics Fast Marching method

In this section we present the algorithm and some considerations about its compu-
tational cost. Note that the basic algorithm is developed inorder to deal with the
evolution of asingle front although it works often for several merging fronts. An
extension to the case of general merging front is also given.Via the Kružkov tran-
form v(x) = 1− e−T(x) the equation (1) can be rewritten in the fixed point form
v(x) = F [v(x)] := mina∈B(0,1){c(x)a ·∇v(x)}+1 whereB(0,1) is the unit ball cen-
tered in 0. Let us just recall the basic semi-Lagrangian scheme we will use as local
rule for the computation. The value ofv at the nodexi will be denoted byvi.

{
vi = min

a∈B(0,1)
{e−hv(xi −hc(xi)a)+1−e−h, xi ∈ IRn\Ω0

vi = 0, xi ∈ ∂Ω0

(2)

We chose a variable (fictitious) time steph = hi such thatc(xi)hi = ∆x and we use a
linear interpolation to computev(xi −hic(xi)a).
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2.1 Main idea

In several situations the accept-the-node-with-minimum-value condition of FM
method appears to be too restrictive, particularly whenc(x) ≡ c0 andΩ0 is a small
ball. In fact, in this case one can accept almost all the nodesin the narrow band at
the same time without loosing informations.
In the Characteristics Fast Marching (CFM) method the pointof view is reversed
with respect to the FM method. Instead of declaring acceptedthe node with the
minimum value in the narrow band (i.e. the first node which will be reached by the
front in the next iteration), we look for the node in the narrow band with the maxi-
mal velocitycmax, i.e. the node from which we can cover the distance∆x and enter
the accepted zone in the minimum time. Once we havecmax we can compute the
time step∆ t = ∆x

cmax
for that iteration which is the time needed by the fastest node to

reach the accepted zone. Whileall the nodes with the maximal velocitycmax reach
the accepted zone the other nodes in the narrow band come closer to the accepted
zone without touching it. In order to take into account this displacement (which is
smaller than∆x), we introduce thelocal time t loc

i . The local time is set to 0 when the
nodei enters the narrow band and it is increased at each iteration by the (variable)
increment∆ t until the node is accepted. At each iteration we label as accepted all
the nodes having a local timet loc

i large enough to safisfy two conditions: they reach
the accepted zone moving at speedc(xi) and they are computed by (2) just using
nodes in the accepted region.

2.2 The CFM algorithm for a single front

Let us introduce the algorithm. In the following, the set of the nodes belonging to
the narrow band will be denoted byNB.

Initialization

1. The nodes belonging to the initial frontΓ0 are located and labeled asaccepted.
They form the set̃Γ0. The value ofv of these nodes is set to 0.

2. NB is defined as the set of the neighbors ofΓ̃0, external toΓ0.
3. Sett loc

i := 0 for anyi ∈ NB.
4. The remaining nodes are labeled asfar, their value is set to 1 (corresponding to

T = +∞).

Main Cycle

1. Computecmax = max{ci : i ∈ NB} and set∆ t := ∆x/cmax.
2. For anyi ∈ NB:

a. Update the local time:t loc
i := t loc

i + ∆ t.
b. If t loc

i · ci ≥ ∆x then
i. Computevi by the scheme (2).
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ii. Check if vi is computed using onlyaccepted nodes. If yes, setflag=true,
else setflag=false.

iii. If flag=true, then
- Labeli asaccepted and removei from NB.
- DefineFN as the set of thefar neighbors ofi. IncludeFN in NB and set
t loc
k := 0 for anyk ∈ FN.

3. If not all nodes areaccepted go back to 1.

2.3 Front Merging

Let us extend the previous algorithm to the more interestingsituation when more
fronts are merging together. This a delicate point because we risk to accept too
many points before they reach the correct value. One of the main differences with
respect to the FM method is that the narrow band does not follow exactly the level
sets of the solution. For example, ifc(x) is constant, the narrow band of a rectangular
front evolves without smoothing corners contrary to the real level sets of the exact
solution. In computing the evolution of a single front this is not a major difficulty,
since the correctness of the solution is guaranteed by the fact that we acceptonly
those nodes computed by other already accepted nodes. However, the evolution of
m fronts merging together can be difficult to follow in some cases (but not in all
cases). In fact, a single node can be reached first by the narrow band corresponding
to one on those fronts and it is accepted according to these informations whereas it
should be accepted according to the informations driven by another front. In Fig. 1
we can see a front merging where this situation occurs and produces a wrong so-

Fig. 1 The merging zone in
the case the CFM method fails
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lution in the merging zone. Note that this difficulty can not be solved reducing the
space step∆x and it seems that there is no way to solve the problem without making
some important changes to the algorithm.
In order to deal withm merging fronts we start considering we can compute by
CFM method them value functionsv(k), k = 1, . . . ,m corresponding to the evo-
lutions of them fronts onm copies of the domain and than take the minimum
v := min{v(1), . . . ,v(m)} as final solution. Of course this choice leads to multiply
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by m the time required for computation (we do not consider here problems related
to memory) and then it is not efficient. To overcome this problem we use the follow-

ing strategy. When thek-th CFM method accepts the nodei with valuev(k)
i , it checks

if another CFM method has already computed a value ˜vi < v(k)
i for the same node.

If this is the case, thek-th CFM method avoids to enlarge the narrow band from the
nodei. This procedure leads to a very small overlapping zone between fronts and a
CPU time comparable with the CFM method for a single front (see Fig. 2).
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Fig. 2 Merging via two applications of CFM method

Computational cost
The computational cost of the CFM method is more complicatedto determine with
respect to the FM method. This is mainly due to the fact that itis very difficult to
saya priori how many times theflag remains fixed to false for each node. By the
experiments it seems that this happens when the velocity field c(x) increases along
characteristics.
Searching for the maximal velocitycmax in the narrow band costsO(lnNnb) where
Nnb is the number of nodes in the narrow band (bounded byN but expected to be of
order

√
N).

When the velocity is constant all the nodes of the narrow bandare accepted at the
same time, then the number of times we need to search forcmax in the narrow band
is divided by a factorNnb with respect to the FM method and this is surely the most
powerful feature of the CFM method.
In conclusion, for a constant velocityc(x) ≡ c0 we expect the computational cost to
be of orderO((N lnNnb)/Nnb) = O(

√
N ln

√
N).

3 Numerical results

In this section we present some numerical tests in order to compare the CFM method
with the standard iterative semi-Lagrangian (SL) scheme and the FM method based
on the semi-Lagrangian scheme (FM-SL) introduced in [2]. The domain of compu-
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tation is[−2,2]2. We used MATLAB 7.0 on a Processor Intel dual core 2x2.80 GHz
with 1 GB RAM.

Test 1: constant velocity. Γ0 = (0,0). c(x,y) ≡ 1. Solution:T (x,y) =
√

x2 + y2.

Test 2: velocity depending on x. Γ0 = (0,0). c(x,y) = x +3.

Test 3: velocity depending on x and y. Γ0 = (0,0). c(x,y) = |x + y|.

Test 4: merging of two fronts. Γ0 = a rectangle and a circle. c(x,y) ≡ 1.

Table 1 Errors and CPU time for Test 1

method ∆x L∞ error L1 error CPU time (sec)

CFM 0.08 0.0329 0.3757 0.27
FM-SL 0.08 0.0329 0.3757 0.58
SL (46 it) 0.08 0.0329 0.3757 9.7

CFM 0.04 0.0204 0.2340 1.14
FM-SL 0.04 0.0204 0.2340 2.44
SL (86 it) 0.04 0.0204 0.2340 70.95

CFM 0.02 0.0122 0.1406 4.9
FM-SL 0.02 0.0122 0.1406 10.56
SL (162 it) 0.02 0.0122 0.1406 530.56

Fig. 3 Numerical result for
Test 2
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Comments
By Test 1 we can see that the semi-Lagrangian iterative method is much slower
than both Fast Marching methods although all methods compute exactly the same
approximation of the viscosity solution of equation (1).



A Characteristics Driven Fast Marching Method for the Eikonal Equation 71

Table 2 CPU time for Test 2

method ∆x CPU time (sec)

CFM 0.04 1.19
FM-SL 0.04 2.34

CFM 0.02 5.20
FM-SL 0.02 10.44

Fig. 4 Numerical result for
Test 3
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Table 3 CPU time for Test 3

method ∆x CPU time (sec)

CFM 0.04 3.5
FM-SL 0.04 2.5

CFM 0.02 16.73
FM-SL 0.02 11.59

Fig. 5 Numerical result for
Test 4
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Table 4 CPU time for Test 4

method ∆x CPU time (sec)

CFM 0.04 1.05
FM-SL 0.04 2.12

CFM 0.02 5.08
FM-SL 0.02 9.53

As expected, the CPU time for CFM method is smaller than that of FM method
when the velocity field is constant or have relatively small variations in the domain
(Test 1 and 2).
When the functionc(x) is increasing along characteristics (Test 3) the CFM method
is slower than the FM method, this is due to the fact that theflag is often false after
the step(ii) of the algorithm so that a lot of nodes in the narrow band are computed
but only few of them are accepted. Note that in the FM method not all the nodes in
the narrow band are computed at each iterations but only the new entries.
In Test 4 the evolution of two merging fronts is computed without any modification
of the basic algorithm and again the CPU time for the CFM method is about the half
of the time needed by the FM method.
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plicate, SAPIENZA - Università di Roma, Rome, Italy, February 2007

2. Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the Eikonal equation and appli-
cations. SIAM J. Numer. Anal.,45 (2007), pp. 1979–2011

3. Falcone, M.: The minimum time problem and its applications to front propagation. In A.
Visintin e G. Buttazzo (eds.), ”Motion by mean curvature andrelated topics”, De Gruyter
Verlag, Berlino, 1994

4. Falcone, M., Giorgi, T., Loreti, P.: Level sets of viscosity solution: some applications to fronts
and rendez-vous problems. SIAM J. Appl. Math.,54 (1994), pp. 1335–1354

5. Kim, S.: AnO(N) level set method for eikonal equations. SIAM J. Sci. Comput., 22 (2001),
pp. 2178–2193

6. Sethian, J. A.: Level set methods and fast marching methods. Evolving interfaces in computa-
tional geometry, fluid mechanics, computer vision, and materials science. Cambridge Univer-
sity Press, 1999

7. Sethian, J. A.: A fast marching level set method for monotonically advancing fronts. Proc.
Natl. Acad. Sci. USA,93 (1996), pp. 1591–1595

8. Sethian, J. A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equa-
tions: theory and algorithms. SIAM J. Numer. Anal.,41 (2003), pp. 325–363

9. Tsitsiklis, J. N.: Efficient algorithms for globally optimal trajectories. IEEE Tran. Automatic.
Control,40 (1995), pp. 1528–1538


