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Abstract We introduce a new Fast Marching method for the eikonal eégiathe
method is based on the informations driven by charactesistnd it is an improve-
ment with respect to the standard Fast Marching method #ilaceepts more than
one node at every iteration using a dynamic condition. Wéyaadhe method and
present several tests on fronts evolving in the normal torevith variable veloci-
ties including cases where a change in topology occurs.

1 Introduction

The success of the level set method in the analysis and inrthdagion of com-
plex interface problems is mainly due to its capability tondlie the changes in
topology of the interfaces. The price to pay is the fact thatleok for a function
u:R"x[0,T] — R and we locate the frorf§ at timet just considering the 0-level
set ofu(x,t), so we add one extra dimension to the original problem whieslin
R".
The Fast Marching (FM) method has been proposed to cut dosvodimputational
complexity of the level set method (see [7, 9] for the origintlee method and
[1, 2, 8] for some recent developments). It was developeth®time-independent
eikonal equation

{c(x)|DT(x)| =1,xe RM\Q )

T(X)ZO7 xelg=0Q

whereQq is a closed bounded set ao() is Lipschitz continuous and strictly pos-
itive. The front is recovered as theevel set of the minimal time functiof (x)
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which is the unique viscosity solution of (1). Note that tb&ugion u of the level set
method can be written agx,t) = T (x) —t, so (1) is related both to the evolution of
a front with velocityc(x) in the normal direction and to the minimum time problem
(see [3, 6]).

The FM method sets-up the computation in a narrow band neafréimt and
updates the narrow band in order to follow the evolution effitont at every time.
In this way it eliminates the extra dimension introducedtmy todel since at every
iteration the computation is performed in a neighborhootheffront,i.e. we work
on O(v/N) nodes if the grid hasl nodes. Once a node exits the narrow band it is
acceptedi.e. it is no more computed in the following iterations. The FM hod
accepts only one node at every iteration (the node with themail valueT) to
guarantee that the evolution of the front is tracked colydgdbwever, in several sit-
uations one has the impression that the FM method can be wegend that it is not
needed to accept just one point at every iteration. For elatips is the case when
the initial configurationQq is convex so that in the normal evolution of the front
there are neither a merging nor a crossing of charactesistiee main contribution
here is to modify the FM method based on the semi-Lagrangiproaimation (see
[2, 3] for details) developing a new algorithm which acceggtgeral points provided
some local conditions are satisfied (see Section 2). In thiswe drop the search
for the minimum valuet every iteration via a Min-Heap structure. We note that an-
other Group Marching algorithm has been proposed by Kim jiidSpeed up the
standard FM method based on the finite difference schemeal@arithm is differ-
entin two respects. The first is that we use a different ladal for the computation
whereas the second is related to the condition which allawsyethod to accept
more nodes.

2 The Characteristics Fast Marching method

In this section we present the algorithm and some considesaabout its compu-
tational cost. Note that the basic algorithm is developedrider to deal with the
evolution of asingle front although it works often for several merging fronts. An
extension to the case of general merging front is also givVenthe Kruzkov tran-
form v(x) = 1—e "™ the equation (1) can be rewritten in the fixed point form
V(X) = F[V(X)] := minaep(o,1y{c(X)a- Ov(x)} + 1 whereB(0, 1) is the unit ball cen-
tered in 0. Let us just recall the basic semi-Lagrangianreehee will use as local
rule for the computation. The value vkt the node; will be denoted byy;.

vi= min {e"(x—hc(x)a)+1—e " x € R"\Q
= min, {eMv(x —ho(x)a) +1-e", x € R"\ 2 (2)
vi =0, Xi € 0Qp
We chose a variable (fictitious) time step= hj such that(x )h; = Ax and we use a
linear interpolation to computgx — hic(x)a).
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2.1 Main idea

In several situations the accept-the-node-with-minimwue condition of FM
method appears to be too restrictive, particularly wbeh = co andQg is a small
ball. In fact, in this case one can accept almost all the nad#e narrow band at
the same time without loosing informations.

In the Characteristics Fast Marching (CFM) method the pofntiew is reversed
with respect to the FM method. Instead of declaring accefitechode with the
minimum value in the narrow bandé. the first node which will be reached by the
front in the next iteration), we look for the node in the nartoand with the maxi-
mal velocitycnax, i.€. the node from which we can cover the distadoeand enter
the accepted zone in the minimum time. Once we hayg we can compute the
time stepAt = CA—m;‘X for that iteration which is the time needed by the fastesertod
reach the accepted zone. Whilé the nodes with the maximal velocityax reach
the accepted zone the other nodes in the narrow band coner tbothe accepted
zone without touching it. In order to take into account thigpthcement (which is
smaller thamx), we introduce théocal timet/°°. The local time is set to 0 when the
nodei enters the narrow band and it is increased at each iteragidineb(variable)
incrementAt until the node is accepted. At each iteration we label aspaedeall
the nodes having a local timn,ké’C large enough to safisfy two conditions: they reach
the accepted zone moving at spe¥g) and they are computed by (2) just using
nodes in the accepted region.

2.2 The CFM algorithm for a single front

Let us introduce the algorithm. In the following, the setloé hodes belonging to
the narrow band will be denoted INB.

Initialization

1. The nodes belonging to the initial frof are located and labeled ascepted.
They form the sefp. The value ol of these nodes is set to 0.

. NBis defined as the set of the neighborggfexternal ta.

. Sett/°¢ := 0 for anyi € NB.

. The remaining nodes are labeledas their value is set to 1 (corresponding to
T = +00).

Main Cycle

1. Comput&max = max{c : i € NB} and sefAt := AX/Crpx.
2. Foranyi € NB:

A WN

a. Update the local time!° := t/°° + At.
b. Ift/%.¢ > Axthen
i. Computev; by the scheme (2).
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ii. Checkify; is computed using onlgiccepted nodes. If yes, sdtl ag=true,
else sef | ag=false.

ii. If flag=true,then
- Labeli asaccepted and remove from NB.
- DefineFN as the set of th&ar neighbors of. IncludeFN in NB and set
tl¢ := 0 for anyk € FN.

3. If not all nodes araccepted go back to 1.

2.3 Front Merging

Let us extend the previous algorithm to the more interestihgation when more
fronts are merging together. This a delicate point becauseisk to accept too
many points before they reach the correct value. One of the difierences with
respect to the FM method is that the narrow band does notfdactly the level
sets of the solution. For examplecii) is constant, the narrow band of a rectangular
front evolves without smoothing corners contrary to the Iezel sets of the exact
solution. In computing the evolution of a single front thésniot a major difficulty,
since the correctness of the solution is guaranteed by tidHat we acceponly
those nodes computed by other already accepted nodes. EiQuey evolution of
m fronts merging together can be difficult to follow in someesagbut not in all
cases). In fact, a single node can be reached first by thewband corresponding
to one on those fronts and it is accepted according to thésenations whereas it
should be accepted according to the informations drivemiogteer front. In Fig. 1
we can see a front merging where this situation occurs anduges a wrong so-
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Fig. 1 The merging zone in ﬂ \
the case the CFM method fails 201 P

lution in the merging zone. Note that this difficulty can netsolved reducing the
space ste@x and it seems that there is no way to solve the problem with@img
some important changes to the algorithm.

In order to deal withm merging fronts we start considering we can compute by
CFM method them value functionsv®, k = 1,...,m corresponding to the evo-
lutions of them fronts onm copies of the domain and than take the minimum
v:=min{vlV ... viM} as final solution. Of course this choice leads to multiply
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by mthe time required for computation (we do not consider heoblems related

to memory) and then it is not efficient. To overcome this peabive use the follow-
ing strategy. When thieth CFM method accepts the nodsith valuevi(k>, it checks

if another CFM method has already computed a vajue \7i(k) for the same node.

If this is the case, thk-th CFM method avoids to enlarge the narrow band from the
nodei. This procedure leads to a very small overlapping zone atf@nts and a
CPU time comparable with the CFM method for a single frone (Sig. 2).

Computational cost

The computational cost of the CFM method is more complictdatbtermine with
respect to the FM method. This is mainly due to the fact that very difficult to
saya priori how many times thé| ag remains fixed to false for each node. By the
experiments it seems that this happens when the velocitydig) increases along
characteristics.

Searching for the maximal velocityx in the narrow band cos®(InNy,) where
Nnp is the number of nodes in the narrow band (boundeN it expected to be of
ordery/N).

When the velocity is constant all the nodes of the narrow edaccepted at the
same time, then the number of times we need to searahfQiin the narrow band
is divided by a factoN,, with respect to the FM method and this is surely the most
powerful feature of the CFM method.

In conclusion, for a constant velocityx) = ¢y we expect the computational cost to
be of ordetO((NInNgp)/Npp) = O(vNIny/N).

=

Fig. 2 Merging via two applications of CFM method

3 Numerical results

In this section we present some numerical tests in ordentgpeoe the CFM method
with the standard iterative semi-Lagrangian (SL) schenaktlae FM method based
on the semi-Lagrangian scheme (FM-SL) introduced in [2f @bmain of compu-
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tation is[—2,2]2. We used MATLAB 7.0 on a Processor Intel dual core 2x2.80 GHz
with 1 GB RAM.

Test 1: constant velocity. o= (0,0). ¢c(x,y) =1. Solution:T(x,y) = /X2 + Y2,
Test 2: velocity dependingon x. o= (0,0). c(x,y) = x+ 3.
Test 3: velocity dependingon xandy. o= (0,0). c(xy) =[x+

Test 4: merging of two fronts. o = a rectangle and a circle. c¢(x,y) = 1.

Table1 Errors and CPU time for Test 1

method AX L® error L error CPU time (sec)
CFM 0.08 0.0329 0.3757 0.27
FM-SL 0.08 0.0329 0.3757 0.58
SL (46 it) 0.08 0.0329 0.3757 9.7
CFM 0.04 0.0204 0.2340 1.14
FM-SL 0.04 0.0204 0.2340 2.44
SL (86 it) 0.04 0.0204 0.2340 70.95
CFM 0.02 0.0122 0.1406 4.9
FM-SL 0.02 0.0122 0.1406 10.56
SL (162 it) 0.02 0.0122 0.1406 530.56
o

Fig. 3 Numerical result for —333\ . > =
Test 2 grid= 101x101 SL-CFM

Comments

By Test 1 we can see that the semi-Lagrangian iterative rdethonuch slower
than both Fast Marching methods although all methods coengiactly the same
approximation of the viscosity solution of equation (1).
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Table2 CPU time for Test 2

method AX CPU time (sec)
CFM 0.04 1.19

FM-SL 0.04 2.34

CFM 0.02 5.20

FM-SL 0.02 10.44

Fig. 4 Numerical result for 2 = - .
Test 3 grid= 101x101 SL-CFM

Table3 CPU time for Test 3

method AX CPU time (sec)
CFM 0.04 35
FM-SL 0.04 2.5
CFM 0.02 16.73
FM-SL 0.02 11.59
2
15
1
0.5> <
0
-0.5
-1
-15
Fig. 5 Numerical result for 2

-1 0 1
SL-CFM, grid= 101x101
Test 4
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Table4 CPU time for Test 4

method AX CPU time (sec)
CFM 0.04 1.05
FM-SL 0.04 212
CFM 0.02 5.08
FM-SL 0.02 9.53

As expected, the CPU time for CFM method is smaller than tfid\d method
when the velocity field is constant or have relatively smaliiations in the domain
(Test1 and 2).

When the functiore(x) is increasing along characteristics (Test 3) the CFM method
is slower than the FM method, this is due to the fact thaf theg is often false after
the step(ii) of the algorithm so that a lot of nodes in the narrow band aneprded
but only few of them are accepted. Note that in the FM methddtohe nodes in
the narrow band are computed at each iterations but onlya¥veentries.

In Test 4 the evolution of two merging fronts is computed withany modification
of the basic algorithm and again the CPU time for the CFM mete@bout the half
of the time needed by the FM method.
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