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Introduction

The numerical approximation of nonlinear partial differential equations is a challenging

problem with a great impact on applications in several fields. This thesis deals with

the development and the analysis of numerical methods for the resolution of first order

nonlinear differential equations arising in the study of the propagation of fronts via the

level set method, the Perspective Shape-from-Shading problem and the Pursuit-Evasion

games with state constraints. In all these cases our goal is to compute an approximation

of the weak solution in the viscosity sense [34, 15, 7].

In order to set this work into perspective let us mention some previous works on these

topics that have been the basis for our research. It is well known that the level set method,

introduced by Osher and Sethian in [72] for the study of a front evolution, produces a first

order evolutive equation in the case of a normal velocity c which only depends on space

and time,

ut(x, t) + c(x, t)|∇u(x, t)| = 0 (1)

whereas it yields a second order equation when the velocity also depends on the geometric

properties of the front, typically on its curvature (see the monographs [84], [71]). The front

at time t can be recovered as the 0-level set of the function u(·, t). The techniques used

to approximate these problems are based on finite difference schemes, semi-Lagrangian

schemes and, more recently, finite element schemes. It should also be mentioned that

classical approximation methods require the computation of an approximate solution

on every node of the grid at every iteration and are generally considered rather

expensive. Starting with [85, 97] new methods have been proposed in order to reduce

the computational effort and obtain the solution in a finite number of steps. These new

methods save a lot of floating point operations concentrating the computation around the

interface in a small subset of nodes which is called narrow band. Following this idea various

algorithms have been proposed, generally these methods are called Fast Marching (FM)

methods [83].

The contribution of this thesis to the development of Fast Marching methods is twofold.

On one hand we propose [38] a new FM method for eikonal type equations based on the

semi-Lagrangian approximation scheme presented in [48]. That FM scheme requires a

larger narrow band with respect to the classical FM method based on finite difference

therefore a new proof of convergence is needed. A detailed analysis has been carried out

to show that the approximation scheme converges to the viscosity solution and that it is

more accurate with respect to the classical FM method as presented in [85]. Moreover,



4 Contents

we have done a lot of work comparing the new semi-Lagrangian FM method with other

FM methods in the literature on a wide range of problems. The second contribution in

this area is the extension of the FM method to non-convex minmax Hamiltonians which

arise in the study of differential games and to front propagation problems where the scalar

velocity c(x, t) is time-dependent and can change its sign in space and/or in time. This

means that the front can increase or decrease and it can pass several times on the same

point. As far as we know the papers [39, 25] are the first dealing with these problems.

The thesis deals also with an application to image processing which results in a rather

complicated first order equation. The Shape-from-Shading problem is a classical inverse

problem. It consists in reconstructing the shape of a three-dimensional object from the

brightness variation (shading) in a greylevel photograph of that object [57]. Despite the

huge amount of articles that deal with it, few real applications have been developed because

the usual assumptions considered in the theory are too restrictive. Only recently two

new PDE models have been proposed in order to include in the model the perspective

deformation of the image, this allows to drop the unrealistic assumption requiring that

the point of view is very far from the object (see Prados and Faugeras [77], Tankus, Sochen

and Yeshurun [88], Courteille, Crouzil, Durou and Gurdjos [30]). Since those papers, the

Shape-from-Shading was finally applied to some real problems like the reconstruction of

faces [76, 78], the reconstruction of human organs [90] and the digitization of documents

without scanners [31, 32, 29]. The first model, proposed in [30], takes into account the

perspective deformation due to the finite distance between the camera and the scene. In

this model the distance of the light source is infinite so that all the rays are parallel (in the

sequel this model will be denoted by PSFS∞). In the second model, proposed by Prados

and Faugeras [77], the light source is placed at the optical center as in [70] so that this

model is more realistic under flash lighting conditions (in the sequel this model will be

denoted by PSFSr).

The contribution of this thesis on the Perspective Shape-from-Shading problem consists

in the proposition of two semi-Lagrangian schemes for the PSFSr and PSFS∞ models,

an analysis of their convergence and a comparison of the results on some test problems

based on synthetic and real images. Moreover, we address the problem of determining the

uniqueness of weak solutions and show with two counterexamples that the PSFS∞ and

PSFSr problems are not well-posed (see [40, 36]).

The thesis also deals with the numerical approximation of the Isaacs equation and

Pursuit-Evasion games. It is well known (see for example [7]) that via the Dynamic

Programming method one can characterize the value function v of a differential game as

the unique viscosity solution of the Isaacs equation

v(x) + min
b∈B

max
a∈A

{−f(x, a, b) · ∇v(x)} − 1 = 0. (2)

As far as the approximation of (2) is concerned we should mention that several convergence

results as well as a-priori error estimates are now available, see for example [8, 2, 3, 14]

(see also the survey papers [49] and [9, 47] for a comprehensive presentation of this

theory respectively for control problems and games). We will present in the sequel the
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main results of this approach which is based on a discretization in time of the original

control/game problem followed by a discretization in space which result in a fixed point

problem. This approach is natural for control problems since at every discretization we

keep the meaning of the approximate solutions in terms of the control problem and we

have a-priori error estimates which just depend on the data of the problem and on the

discretization steps. Moreover, by the approximate value function one can easily compute

approximate feedback controls and optimal trajectories. For the synthesis of feedback

controls we have some error estimates in the case of control problems [50] but the problem

is still open for games. Before starting our presentation let us quote other numerical

approaches related to the approximation of games. The theory of minmax solutions has

also a numerical counterpart developed by the Russian school (see [91, 73]) which is based

on the construction of generalized gradients adapted to finite difference operators which

approximate the value function. Another approximation for the value and for the optimal

policies of dynamic zero-sum stochastic games has been proposed in [92, 94] and it is

based on the approximation of the game by a finite state approximation (see also [93]

for a numerical solution of zero-sum differential games with stopping time). The theory

of viability [4] is based on set-valued analysis and gives a different characterization of

the value function of control/game problems: the value function is the boundary of the

viability kernel. The numerical counterpart of this approach is based on the approximation

of the viability kernel and can be found in [21, 23, 24].

Finally, let us mention that other numerical methods based on the approximation of

open-loop control have been proposed. The advantage is of course to replace the Dynamic

Programming equation (which can be difficult to solve for high-dimensional problems) by

a large system of ordinary differential equations. The interested reader can find in Pesch

[74] a general presentation.

The contribution of this thesis on differential games consists in the proof of convergence

of the fully-discrete semi-Lagrangian scheme for Pursuit-Evasion games with state

constraints. It is obtained by coupling the convergence of the fully-discrete value function

to the time-discrete value function (see [37]) with the convergence of the time-discrete value

function already developed in [11]. We also state some results on the classical Tag-Chase

game and its implementation, complementing this work with a number on numerical tests

on parallel architectures.

Plan of the thesis

The thesis is organized as follows.

Chapter 1 is devoted to the theoretical background necessary to deal with Hamilton-Jacobi

equations and viscosity solutions. Particular attention is given to the eikonal equation since

it appears many times in a number of different contexts. In Section 1.2 we introduce the

Hamilton-Jacobi-Bellman (HJB) equations related to optimal control problems and the

minimum time problem. Section 1.3 shows how a front propagation problem can be seen

as a minimum time problem and vice versa. This background result is crucial in the rest

of the thesis. Then we deal with non-convex Hamiltonians which arise in the framework of

2-player zero-sum differential games. In Section 1.4 we present the Hamilton-Jacobi-Isaacs
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(HJI) equation associated to the natural generalization of the minimum time problem and

state a number of recent results about Pursuit-Evasion games with state constraints, i.e.

when the two players have to keep the system in a given bounded domain. The final

part of the chapter is dedicated to the semi-Lagrangian approximation of optimal control

problems and differential games without state constraints. We introduce the time-discrete

scheme via a Discrete Dynamic Programming Principle as well the fully-discrete scheme

and analyze their main properties.

Chapter 2 is a small survey on fast and efficient numerical methods for the eikonal

equation (and some other more general equations) which have been developed in the last

ten years. We present the Fast Marching (FM) method (Sethian, 1996 [85]) and its further

generalizations as Group Marching method (Kim, 2001 [63]), FM method for anisotropic

front propagation (Sethian and Vladimirski, 2003 [86]) and FM method for HJB equations

related to the Shape-from-Shading problem (Prados, 2006 [79]). Finally, we present the

main features of the Fast Sweeping method (Zhao, 2005 [100]).

Chapter 3 is devoted to the original results achieved with regard to FM methods (see

[38, 39, 25]). First of all, we focus our attention on the original FM method showing

by an explicit example that, under a particular choice of the velocity of the front and a

particular choice of the finite difference discretization, some imaginary solutions appear.

To overcome this problem, we introduce a new CFL-like condition which guarantees real

solutions in all the domain of computation. After that, a new semi-Lagrangian version of

FM method is given. Since the definition of narrow band slightly changes, a new proof of

convergence is needed. In Section 3.2.3 a number of numerical tests are performed in order

to compare the classical FM method with its new semi-Lagrangian version. In Section 3.3

we extend the FM semi-Lagrangian method to non-convex Hamiltonians, in particular to

minmax Hamiltonians which appear in the analysis of differential games. Some numerical

tests show the potential of this new method. Finally, we present a second extension of the

FM technique to non-monotone evolution of fronts, i.e. when the speed of propagation is

time-dependent and it can change sign in space and/or in time. The new scheme can be

successfully applied to the study of dislocation dynamics.

Chapter 4 deals with the numerical approximation and well/ill-posedness of the

Perspective Shape-from-Shading problem. We introduce a semi-Lagrangian scheme for

the two equations related to the existing models for Perspective Shape-from-Shading,

emphasizing if and how the classical convex/concave ambiguity changes according to the

model’s modifications (see [40, 36]).

Chapter 5 is devoted to the semi-Lagrangian approximation of Pursuit-Evasion games

with state constraints. We prove that the solution of the fully-discrete scheme converges

to the solution of the time-discrete scheme as the mesh size goes to 0. This result can be

coupled with a recent result of Bardi et al. [11] to obtain (under suitable assumptions) the

convergence of the fully-discrete scheme to the continuous problem as the time and space

steps go to 0. Then we present some minor results with regard to the Tag-Chase game and

its implementation. We prove that if a) the game is played in a bounded convex domain,

b) the game ends when the distance between the Pursuer and Evader is smaller than a



Contents 7

given positive tolerance and c) the two players run with the same velocity, the time of

capture is finite (note that in a unbounded domain this is not true). Then we recall a fast

method to make interpolations in high dimensional spaces studied in [26] giving a precise

error estimate. Finally, we show how it is possible to take into account the symmetries

of the problem in order to reduce the high computational cost whenever the game’s field

is a square. In Section 5.4 we present a number of numerical experiments for constrained

Tag-Chase game. In addition to classical tests already studied by Alziary de Roquefort

[3] we perform some test in which the velocity of the Evader is equal or even greater than

the velocity of the Pursuer. To our knowledge this is the first time such an experiments

are performed and the results are quite interesting.





Chapter 1

Background results on
Hamilton-Jacobi equations

In this chapter we present all the definitions and the basic theoretical results we will

refer to in the following. First of all we introduce the notion of viscosity solution of the

Hamilton-Jacobi equation

H(x, u(x),∇u(x)) = 0 , x ∈ Ω (HJ)

where Ω is an open domain of R
n and the Hamiltonian H = H(x, r, p) is a continuous real

valued function on Ω× R× R
n. This notion allows us to obtain important existence and

uniqueness results for some equations of the form (HJ). Then, we will focus our attention

on optimal control problems and Hamilton-Jacobi-Bellman equation showing the strict

relationship with front propagation problems in the framework of level set methods. In

Section 1.4 we present the most important theoretical results for the Hamilton-Jacobi-

Isaacs equation which arises in the study of 2-player zero-sum differential games. We

focus on Pursuit-Evasion games and Pursuit-Evasion games with state constraints, i.e.

in the case the two players have to keep the system in a given bounded domain. In the

last section we introduce the semi-Lagrangian approximation of optimal control problems

and differential games without state constraints. We derive the time-discrete scheme via a

Discrete Dynamic Programming Principle as well the fully-discrete scheme and we analyze

their main properties.

If no specific indication is given, the reader can find the proofs of all theorems in [7] and

[47].

1.1 Viscosity solutions

It is well known that equation (HJ) is in general not well-posed. It is possible to show

several examples in which any classical (that is of class C1) solution exists or infinite

weak (that is a.e. differentiable) solutions exist. Even for the very simple unidimensional

eikonal equation complemented with homogeneous Dirichlet boundary conditions
{
|∇u(x)| = 1 , x ∈ (−1, 1)
u(x) = 0 , x = ±1 (1.1)
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multiple weak solutions are found (see Fig. 1.1). The theory of viscosity solutions was

x

u

−1 1

Figure 1.1: multiple a.e. differentiable solutions of the eikonal equation (1.1)

developed in order to overcome these problems. It gives a tool to get uniqueness of the

solution and in some cases also to select the correct physical solution among all solutions

of the equation. We give here two equivalent definitions of viscosity solution.

Definition 1.1 (I version) A continuous function u is a viscosity solution of the equation

(HJ) if the following conditions are satisfied:

(i) H(x, u(x), p) ≤ 0 for all x ∈ R
n , for all p ∈ D+u(x) (viscosity subsolution)

(ii) H(x, u(x), q) ≥ 0 for all x ∈ R
n , for all q ∈ D−u(x) (viscosity supersolution)

where

D+u(x) =

{
p ∈ R

n : lim sup
y→x

u(y)− u(x)− p · (y − x)
|y − x| ≤ 0

}

D−u(x) =

{
q ∈ R

n : lim inf
y→x

u(y)− u(x)− q · (y − x)
|y − x| ≥ 0

}
.

Definition 1.2 ( II version) A continuous function u is a viscosity solution of the equation

(HJ) if the following conditions are satisfied:

(i) for any test function φ ∈ C1(Ω), if x0 ∈ Ω is a local maximum point for u − φ,

then

H(x0, u(x0),∇φ(x0)) ≤ 0 (viscosity subsolution)

(ii) for any test function φ ∈ C1(Ω), if x1 ∈ Ω is a local minimum point for u− φ, then

H(x1, u(x1),∇φ(x1)) ≥ 0 (viscosity supersolution).

The motivation for the terminology ”viscosity solutions” is that this solution can be

recovered as the limit function u = lim
e→0+

uε where uε ∈ C2(Ω) is the classical solution

of the perturbed problem

−ε4uε +H(x, uε,∇uε) = 0 , x ∈ Ω

in the case uε exists and converges locally uniformly to some continuous function u. This

method is named vanishing viscosity.
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Before recalling the existence and uniqueness results for equation (HJ), we want to show

the useful parallelism between this equation and its evolutive version

ut(y, t) + Ĥ(y, t, u(y, t),∇yu(y, t)) = 0 , (y, t) ∈ (0, Tf )×D (1.2)

where D is an open subset of R
n−1, Tf > 0 is the final time and ∇y is the gradient with

respect to y. Indeed, by the positions

x = (y, t) , Ω = (0, Tf )×D ⊆ R
n , H(x, r, p) = pn + Ĥ(x, r, p1, . . . , pn−1) ,

equation (1.2) is reduced to the form (HJ). As a consequence, all definitions and results

for one equation are easily transferred to the other.

In the following we present some comparison results between viscosity sub- and

supersolutions. As simple corollary, each comparison result produces a uniqueness theorem

for the associated Dirichlet problem.

Theorem 1.3 Let Ω be a bounded open subset of R
n. Assume that u1, u2 ∈ C(Ω) are,

respectively, viscosity sub- and supersolution of

u(x) +H(x,∇u(x)) = 0 , x ∈ Ω (1.3)

and

u1 ≤ u2 on ∂Ω.

Assume also that H satisfies

|H(x, p)−H(y, p)| ≤ ω1(|x− y|(1 + |p|)), (1.4)

for x, y ∈ Ω, p ∈ R
n, where ω1 is a modulus, that is ω1 : [0,+∞)→ [0,+∞) is continuous

nondecreasing with ω1(0) = 0. Then u1 ≤ u2 in Ω.

Theorem 1.4 Assume that u1, u2 ∈ C(Rn)∩L∞(Rn) are, respectively, viscosity sub- and

supersolution of

u(x) +H(x,∇u(x)) = 0 , x ∈ R
n (1.5)

Assume also that H satisfies (1.4) and

|H(x, p)−H(x, q)| ≤ ω2(|p− q|) , for all x, p, q ∈ R
n. (1.6)

where ω2 is a modulus. Then u1 ≤ u2 in R
n.

Remark 1.5 Theorem 1.4 can be generalized to cover the case of a general unbounded

open set Ω ⊂ R
n. Moreover, the assumptions u1, u2 ∈ C(Rn)∩L∞(Rn) can be replaced by

u1, u2 ∈ UC(Rn).
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A comparison result can be formulated for the more general case

H(x,∇u(x)) = 0 , x ∈ Ω (1.7)

only if we assume the convexity of H with respect to the p variable. This assumption

plays a key role in many theoretical results.

Theorem 1.6 Let Ω be a bounded open subset of R
n. Assume that u1, u2 ∈ C(Ω) are,

respectively, viscosity sub- and supersolution of (1.7) with u1 ≤ u2 on ∂Ω. Assume also

that H satisfies (1.4) and the two following conditions

p 7→ H(x, p) is convex on R
n for each x ∈ Ω; (1.8)

{
there exists φ ∈ C(Ω) ∩ C1(Ω) such that φ ≤ u1 in Ω
and sup

x∈Ω′
H(x,∇φ(x)) < 0 , for all Ω′ ⊂⊂ Ω. (1.9)

Then, u1 ≤ u2 in Ω.

1.1.1 The eikonal equation

The classical model problem for (1.7) is the eikonal equation of geometric optics

c(x)|∇T (x)| = 1 , x ∈ Ω. (1.10)

Theorem 1.6 applies to the eikonal equation (1.10) whenever c(x) ∈ Lip(Ω) and it is

strictly positive. In fact (1.9) is satisfied by taking φ(x) ≡ min
Ω
u1.

It easy to prove that the distance function from an arbitrary set S ⊆ R
n, S 6= ∅ defined

by

dS(x) = d(x, S) := inf
z∈S

|x− z| = min
z∈S

|x− z|

is continuous in R
n. Moreover, for smooth ∂S it is smooth near ∂S and satisfies in the

classical sense the equation (1.10) in R
n\S for c(x) ≡ 1.

For a general set S, it can be shown that the function dS is the unique viscosity solution

of |∇T (x)| = 1 in R
n\S.

Remark 1.7 If we consider the eikonal equation in the form |∇T (x)| = f(x) where f is

a function vanishing at least in a single point in Ω, then the uniqueness result does not

hold. This situation is referred to as degenerate eikonal equation. It can be proved that in

this case many viscosity or even classical solutions may appear. Consider for example the

equation |u′| = 2|x| for x ∈ (−1, 1) complemented by Dirichlet boundary condition u = 0

at x = ±1. It is easy to see that u1(x) = x2 − 1 and u2(x) = 1 − x2 are both classical

solutions.
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1.2 Optimal control problems

We introduce here the basic notations and theory for optimal control controls, focusing in

particular on minimum time problems and the related Hamilton-Jacobi-Bellman equation.

Let us consider the controlled nonlinear dynamical system

{
ẏ(t) = f(y(t), a(t)) , t > 0
y(0) = x

(DS)

where

y(t) is the state of the system,

a(·) ∈ A is the control of the player, A being the set of admissible controls defined as

A = {a(·) : [0,+∞)→ A, measurable},

and A is a given compact set of R
m. Assume hereafter f : R

n ×A→ R
n is continuous in

both variables and there exists a constant L > 0 such that

|f(y1, a)− f(y2, a)| ≤ L|y1 − y2| for all y1, y2 ∈ R
n, a ∈ A. (1.11)

By Caratheodory’s theorem the choice of measurable controls guarantees that for any

given a(·) ∈ A, there is a unique trajectory solution of (DS) which will be denoted by

yx(t; a(·)).
The final goal is to find an optimal control a∗(t) such that the corresponding trajectory

yx(t; a
∗(·)) is the ”most convenient” one with respect to some given criterion between all

possible trajectories starting from x.

1.2.1 The infinite horizon problem

In the infinite horizon problem the cost functional J associated to every trajectory which

has to be minimized is

J(x, a(·)) =
∫ ∞

0
l(yx(t; a(·)), a(t))e−λtdt

where the constant interest rate λ is strictly positive and the running cost

l(x, a) : R
n ×A→ R is continuous in both variables, bounded and there exists C > 0

such that

|l(x, a)− l(y, a)| ≤ C|x− y| for all x, y ∈ R
n, a ∈ A.

We are looking for the value function v(x) defined as

v(x) := inf
a(·)∈A

J(x, a(·))

and possibly for the optimal control

a∗(·) = arg min
a(·)∈A

J(x, a(·)).
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Proposition 1.8 Under the assumption on f and l introduced above, the value function

v is bounded and Lipschitz continuous.

Proposition 1.9 (Dynamic Programming Principle). For all x ∈ R
n and t > 0 the

value function satisfies

v(x) = inf
a(·)∈A

{∫ t

0
l(yx(s; a(·)), a(s))e−λsds+ v(yx(t; a(·)))e−λt

}
. (1.12)

Quoting Bellman [16], equation (1.12) means that ”An optimal policy has the property

that whatever the initial state and the initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision”

where in our setting the ”decisions” are the choices of the control.

Proposition 1.10 The value function v is a viscosity solution of

λv + sup
a∈A

{−f(x, a) · ∇v − l(x, a)} = 0 , x ∈ R
n. (1.13)

The equation (1.13) is called the Hamilton-Jacobi-Bellman equation for the infinite horizon

problem.

1.2.2 The finite horizon problem

In the finite horizon problem the cost functional J associated to every trajectory which

has to be minimized is

J(x, t, a(·)) =
∫ t

0
l(yx(s; a(·)), a(s))e−λsds+ g(yx(t; a(·)))e−λt

where λ ≥ 0, l(x, a) satisfies the same hypothesis as in the infinite horizon case above and

the terminal cost g : R
n → R is bounded and uniformly continuous. We are looking for

the value function v(x) defined as

v(x, t) := inf
a(·)∈A

J(x, t, a(·)).

Proposition 1.11 Under the assumption on f, l and g introduced above, the value

function v is bounded and continuous in R
n × [0, T ] for all T > 0.

Proposition 1.12 (Dynamic Programming Principle). For all x ∈ R
n and

0 < τ ≤ t the value function satisfies

v(x, t) = inf
a(·)∈A

{∫ τ

0
l(yx(s; a(·)), a(s))e−λsds+ v(yx(τ ; a(·)))e−λτ , t− τ

}
. (1.14)

Proposition 1.13 The value function v is the unique viscosity solution of
{
vt + λv + sup

a∈A
{−f(x, a) · ∇xv − l(x, a)} = 0 (x, t) ∈ R

n × (0,+∞)

v(x, 0) = g(x) x ∈ R
n.

(1.15)

The equation (1.15) is called the Hamilton-Jacobi-Bellman equation for the finite horizon

problem.
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1.2.3 The minimum time problem

In the minimum time problem the cost associated to every trajectory which has to be

minimized is the time needed by the system to reach a given closed target T ⊂ R
n, that is

J(x, a(·)) = tx(a(·))

where

tx(a(·)) :=
{

min{t : yx(t; a(·)) ∈ T } if yx(t; a(·)) ∈ T for some t ≥ 0
+∞ if yx(t; a(·)) /∈ T for all t ≥ 0.

The value function is

T (x) := inf
a(·)∈A

tx(a(·)). (1.16)

We will refer to T also as the minimum time function and we set T = 0 on T .

Definition 1.14 The reachable set is R := {x ∈ R
n : T (x) < +∞}, i.e. it is the set of

starting points from which it is possible to reach the target.

Note that the reachable set depends on the target, the dynamics and on the set of

admissible controls and it is not a datum in our problem.

Proposition 1.15 (Dynamic Programming Principle). For all x ∈ R, 0 ≤ t < T (x)

(so that x /∈ T ) the value function satisfies

T (x) = inf
a(·)∈A

{t+ T (yx(t; a(·)))} . (DPP)

Let us derive formally the Hamilton-Jacobi-Bellman equation associated to the minimum

time problem from the Dynamic Programming Principle. Rewrite (DPP) as

T (x)− inf
a(·)∈A

T (yx(t; a(·))) = t

and divide by t > 0

sup
a(·)∈A

{
T (x)− T (yx(t; a(·)))

t

}
= 1 for all t < T (x).

We want to pass to the limit as t→ 0+.

Assume that T is differentiable at x and limt→0+ commutes with supa(·). Then, if ẏx(0; a(·))
exists,

sup
a(·)∈A

{−∇T (x) · ẏx(0; a(·))} = 1 ,

so that, if a(0) = a0, we get

max
a0∈A

{−∇T (x) · f(x, a0)} = 1. (1.17)

Note that in the final equation (1.17) the maximum is taken over A and not over the set

of measurable controls A.



16 Background results on Hamilton-Jacobi equations

Proposition 1.16 If R\T is open and T ∈ C(R\T ), then T is a viscosity solution of

max
a∈A

{−f(x, a) · ∇T (x)} − 1 = 0 , x ∈ R\T . (1.18)

Natural boundary conditions for (1.18) are
{
T (x) = 0 x ∈ ∂T
lim

x→∂R
T (x) = +∞.

In order to achieve uniqueness of the viscosity solution of equation (1.18) is useful an

exponential transformation named Kružkov transform

v(x) :=

{
1− e−T (x) if T (x) < +∞ (x ∈ R)
1 if T (x) = +∞ (x /∈ R)

(1.19)

It easy to check (at least formally) that if T is a solution of (1.18) than v is a solution of

v(x) + max
a∈A

{−f(x, a) · ∇v(x)} − 1 = 0 , x ∈ R
n\T . (1.20)

This transformation has many advantages.

1. The equation for v has the form (1.3) so that we can apply the uniqueness result

already developed in this chapter.

2. v takes values in [0, 1] whereas T is generally unbounded (for example if f vanishes

in some points) and this helps in the numerical approximation.

3. The domain in which the equation has to be solved is no more unknown.

4. One can always reconstruct T and R from v by the relations

T (x) = − ln(1− v(x)) , R = {x : v(x) < 1}.

Proposition 1.17 v is the unique viscosity solution of
{
v +max

a∈A
{−f(x, a) · ∇v} − 1 = 0 x ∈ R

n\T
v = 0 x ∈ ∂T

(HJB)

Computation of optimal feedback and trajectories

As mentioned above, the final goal of the minimum time problem (and of every control

problem) is to find the optimal control

a∗(·) = arg min
a(·)∈A

tx(a(·))

and the associated optimal trajectory, i.e. the solution y∗(t) of
{
ẏ(t) = f(y(t), a∗(t)) , t > 0
y(0) = x

(1.21)

The next theorem shows how to compute a∗ in feedback form, i.e. as a function of the

state y(t). This form is obviously better then open-loop optimal control where a∗ depends

only on time t. In fact, the feedback control leads the state to the target even in presence

of perturbations or noise.
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Theorem 1.18 Let T ∈ C1(R\T ) be the unique solution of (1.18) and define a∗(x) as

a∗(x) := argmax
a∈A

{−f(x, a) · ∇T (x)} , x ∈ R\T . (1.22)

Let y∗(t) be the solution of

{
ẏ∗(t) = f(y∗(t), a∗(y∗(t))) , t > 0
y∗(0) = x

. (1.23)

Then, a∗(t) = a∗(y∗(t)) is the optimal control.

Proof . First we note that

d

ds
T (y∗(s)) = ẏ∗(s) · ∇T (y∗(s)) = f(y∗(s), a∗(y

∗(s))) · ∇T (y∗(s))

and then, by choosing x = y∗(s) in (1.18),

d

ds
T (y∗(s)) = −1. (1.24)

By (1.24) we have

T (y∗(tx(a∗(y
∗(t)))))− T (x) =

∫ tx(a∗(y∗(t)))

0

d

ds
T (y∗(s))ds = −tx(a∗(y∗(t))).

Since T (y∗(tx(a∗(y∗(t))))) = 0, we obtain

T (x) = tx(a∗(y
∗(t)))

and thus the conclusion by the definition of T (x). ¥

Note that the differentiability assumption on T in Theorem 1.18 can be relaxed. We
do not give details on this since we will deal only with approximated optimal trajectories
computed by the discrete solution of (1.18).

1.3 Front propagation problems

Given a closed (n−1)-dimensional hypersurface Γt=0, we want to produce an Eulerian
formulation for the motion of the hypersurface Γt propagating along its exterior normal
direction with speed c(x). The main idea of the level set methodology (see [84]) is to
embed this propagating interface as the zero-level set of a higher dimensional function φ
defined as

φ(x, t) := ±d(x,Γt) , x ∈ R
n, t ≥ 0

where d(x,Γt) is the distance between a point x ∈ R
n and the interface Γt with the ”+”

sign if x is outside the interface and the ”-” sign if it is inside. The datum of the problem is
the initial condition φ(x, 0) that is the signed distance function to the initial hypersurface.
Once we defined φ we can recover a partial differential equations which models the front
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propagation. Let x(t) be the trajectory that a generic point of the hypersurface traces in
the space. We want that

φ(x(t), t) = 0 ∀t > 0

that is the point x(t) is a point of the interface at time t for every t > 0. Differentiating
with respect to t we obtain

φt +∇φ(x(t), t) · xt(t) = 0 , t > 0

where ∇ is the gradient with respect to x. We know that the interface is propagating
along its exterior normal direction, i.e. xt(t) = c(x)η(x) for all x ∈ Γt, where η(x) is the
exterior normal unit vector to the interface. Since

η(x(t)) =
∇φ(x(t), t)
|∇φ(x(t), t)| ,

we formally obtain that the equation modeling the evolution of the interface is the following
evolutionary Hamilton-Jacobi equation

{
ut(x, t) + c(x)|∇u(x, t)| = 0 x ∈ R

n, t > 0
u(x, 0) = ±d(x,Γ0) x ∈ R

n.
(1.25)

and the front at any time is given by

Γt = {x ∈ R
n : u(x, t) = 0}.

Remark 1.19 As remarked in [42] it would be tempting to say that for each t the function
φ is the solution of the equation (1.25) not only on Γt but in all R

n. This is not true because
the equivalence xt(t) = c(x)η(x) holds only on Γt. Therefore, the zero-level of the solution
u(x, t) of (1.25) is actually the interface at time t but u is not the distance function to Γt
for any t > 0.
In order to get an equation which describes the evolution of the distance-to-Γt function φ
we have to replace the equation (1.25) with the following equation (see also [55])

{
φt(x, t) + c(x− φ(x, t)∇φ(x, t)) = 0 x ∈ R

n, t > 0
φ(x, 0) = ±d(x,Γ0) x ∈ R

n.
(1.26)

If the evolution of the front is strictly monotone, i.e. c(x) > 0 for all x ∈ R
n, then

equation (1.25) can be written in a stationary form introducing the function

T (x) := u(x, t) + t (1.27)

and then we can recover the interface by the knowledge of T at any time using

Γt = {x ∈ R
n : T (x) = t}.

Substituting (1.27) in the first equation of (1.25) we obtain

c(x)|∇T (x)| = 1
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and then we can reformulate the boundary value problem as
{
c(x)|∇T (x)| = 1 x ∈ R

n\Ω0

T (x) = 0 x ∈ ∂Ω0
(1.28)

where Ω0 is a subset of R
n such that ∂Ω0 = Γ0. Note that the Dirichlet boundary condition

T (x) = 0 on ∂Ω0 is quite natural considering that T (x) represents the time needed by the
interface to reach the point x.

Let us recover equation (1.28) in the setting of optimal control problems. Let us consider
again the problem (DS) and choose

f(y, a(t)) = −c(y)a(t) , c : R
n → R , c > 0

and R
n ⊃ A = B(0, 1) where B(0,1) is the unit ball centered in the origin. This choice

means that the controller can move the state of the system with speed c > 0 (which
depends on the position of the system itself) in every direction he wants. Obviously he
can reach the target from every initial position x and then R = R

n. Equation (1.18)
becomes

c(x) max
a∈B(0,1)

{−a · ∇T (x)} = 1 , x ∈ R
n\T (1.29)

and it easy to check that the unit vector a which realizes the max in the above equation is

a∗(x) := arg max
a∈B(0,1)

{−a · ∇T (x)} = − ∇T (x)
|∇T (x)| (1.30)

so that equation (1.29) can be written as

c(x)|∇T (x)| = 1 , x ∈ R
n\T .

If Ω0 = T , we just proved that the front at time t is the set of the points which can be
driven to the target in time t. Moreover, the trajectory x(t) of a point of the front (i.e.
a characteristic curve of equation (1.28)) coincides with the optimal trajectory starting
at x(t) and reaching the target in time t. Lastly, by (1.30) we obtain that characteristic
and gradient directions coincide. This is not true for a general control/front propagation
problem as we will see in Section 2.2.

1.4 Differential games

In this section we introduce basic notations and theory for 2-player zero-sum deterministic
differential games and the related Hamilton-Jacobi-Isaacs equation. Our setting will be
very similar to that for minimum time problem, the main difference here is that two players
instead of one can control the dynamics of the system. The two players are opponents
since the first player wants to minimize the cost associate to the solution of the system
whereas the second player wants to maximize it. The first player is called P , standing
for Pursuer, the second is called E, standing for Evader. The game is said ”zero-sum”
because any gain of one player is a loss of the same size for the other player.
The modified version of the dynamical system (DS) is

{
ẏ(t) = f(y(t), a(t), b(t)) , t > 0
y(0) = x

(1.31)
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where
y(t) is the state of the system,
a(·) ∈ A and b(·) ∈ B are respectively the controls of the first and the second player, A
and B being the sets of admissible controls defined as

A = {a(·) : [0,+∞)→ A, measurable} ,

B = {b(·) : [0,+∞)→ B, measurable} ,
and A and B are given compact sets of R

m. Assume again f : R
n × A × B → R

n is
continuous in all three variables and there exists L > 0 such that

|f(y1, a, b)− f(y2, a, b)| ≤ L|y1 − y2| for all y1, y2 ∈ R
n, a ∈ A, b ∈ B. (1.32)

We will denote the solution of (1.31) by yx(t; a(·), b(·)). We will only deal with the natural
extension of the minimum time problem presented in section 1.2.3 so we define the payoff
of the game as

tx(a(·), b(·)) :=
{

min{t : yx(t; a(·), b(·)) ∈ T } yx(t; a(·), b(·)) ∈ T for some t ≥ 0
+∞ yx(t; a(·), b(·)) /∈ T for all t ≥ 0

where T ⊆ R
n is a given closed target.

Nonanticipating strategies

Defining the value function T for this problem is not an easy task. A direct generalization
of (1.16) leads to

inf
a(·)∈A

sup
b(·)∈B

tx(a(·), b(·))

which is quite unrealistic because it means that player P can choose his control a using
the information of the whole future response of player E to any control function a and
this will give him a big advantage. Moreover this approach is not fit to be analyzed by
the Dynamic Programming method.
A more unbiased information pattern can be modeled by means of the notion of
nonanticipating strategies (see [44] and the references therein).

Definition 1.20 A strategy for the first player is a map α : B → A; it is nonanticipating
if α ∈ Γ, where

Γ = {α : B → A : b(t) = b̃(t) for all t ≤ t′ implies α[b](t) = α[b̃](t) for all t ≤ t′}.

Similarly, a strategy for the second player is a map β : A → B; it is nonanticipating if
β ∈ ∆, where

∆ = {β : A → B : a(t) = ã(t) for all t ≤ t′ implies β[a](t) = β[ã](t) for all t ≤ t′}.

The above definition is fair with respect to the two players. In fact, if the player who
controls a(·) (respectively b(·)) chooses his control in Γ (respectively ∆) he will not be
influenced by the future choices of the other player. As a consequence, all decisions are
made by the knowledge of only the present and past history.
Now we can define the lower and the upper values of a game.
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Definition 1.21 The lower value of a game is

Tlow(x) = inf
α∈Γ

sup
b∈B

tx(α[b], b);

the upper value is
Tupp(x) = sup

β∈∆
inf
a∈A

tx(a, β[a]).

If Tlow ≡ Tupp, we say that the game has a value and we set T = Tupp = Tlow.

Hereafter we will consider only games which have a value, therefore we do not make any
distinction between Tlow and Tupp but note that the following results are valid in general
only for Tlow.
Recalling Definition 1.14, we can enunciate the following

Theorem 1.22 (Dynamic Programming Principle). For all 0 ≤ t < T (x)

T (x) = inf
α∈Γ

sup
b∈B

{t+ T (yx(t;α[b], b))} , x ∈ R\T (1.33)

and

v(x) = inf
α∈Γ

sup
b∈B

{∫ t

0
e−sds+ e−tv(yx(t;α[b], b))

}
, x ∈ R

n\T (1.34)

where v is the Kružkov transform of T defined as in (1.19).

The proof of this Theorem can be obtained by standard arguments (see for example
[46, 5, 7]). We write it here for reader’s convenience.
Proof .
We give only the proof of (1.33) since the other is similar. Define

w(x) := inf
α∈Γ

sup
b∈B

{t+ T (yx(t;α[b], b))} .

We fix ε > 0 and for any z ∈ R
n\T we pick αz ∈ Γ such that

T (z) ≥ sup
b∈B

{tz(αz[b], b)} − ε. (1.35)

We first prove that T (x) ≤ w(x). We choose α ∈ Γ such that

w(x) ≥ sup
b∈B

{t+ T (yx(t;α[b], b))} − ε. (1.36)

Now we define γ ∈ Γ as follows

γ[b](s) :=

{
α[b](s) s ≤ t
αz[b(·+ t)](s− t) s > t

with z := yx(t;α[b], b). Finally we have

w(x) ≥ sup
b∈B

{t+ T (yx(t;α[b], b))} − ε =

t+ sup
b∈B

{T (z)} − ε ≥

t+ sup
b∈B

{tz(αz[b], b)− ε} − ε =

sup
b∈B

{tx(γ[b], b)} − 2ε ≥ T (x)− 2ε
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which gives the desired inequality because ε is arbitrary.
To prove the inequality T (x) ≥ w(x) we pick b1 ∈ B such that

w(x) ≤ inf
α∈Γ

{t+ T (yx(t;α[b1], b1))}+ ε (1.37)

and for any x ∈ R
n\T we pick αx ∈ Γ such that

T (x) ≥ sup
b∈B

{tx(αx[b], b)} − ε. (1.38)

Obviously we have
w(x) ≤ t+ T (yx(t;αx[b1], b1)) + ε. (1.39)

Now for each b ∈ B define b̃ ∈ B by

b̃(s) :=

{
b1(s) s ≤ t
b(s− t) s > t

(1.40)

and then we define
α̃[b](s) := αx [̃b](s+ t). (1.41)

Next set
z := yx(t;αx[b1], b1) (1.42)

and choose b2 ∈ B such that
T (z) ≤ tz(α̃[b2], b2) + ε. (1.43)

By (1.38) we obtain that

T (x) ≥ sup
b∈B

{tx(αx[b], b)} − ε ≥ tx(αx [̃b2], b̃2)− ε. (1.44)

Now we claim that
w(x) ≤ tx(αx [̃b2], b̃2) + 2ε (1.45)

which gives, together with (1.44),

w(x) ≤ T (x) + 3ε

and thus the conclusion by the arbitrariness of ε > 0. To prove the claim observe that, by
(1.40) and (1.41)

yx(τ ;αx[b̃2], b̃2) =

{
yx(τ ;αx[b1], b1) τ ≤ t
yz(τ − t; α̃[b2], b2) τ > t

so we have
tz(α̃[b2], b2) = tx(αx [̃b2], b̃2)− t (1.46)

and then by (1.39), (1.42), (1.43) and (1.46)

w(x) ≤ t+ T (yx(t;αx[b1], b1)) + ε = t+ T (z) + ε ≤
t+ tz(α̃[b2], b2) + 2ε ≤ tx(αx [̃b2], b̃2) + 2ε.

¥

Let us derive the Hamilton-Jacobi-Isaacs equation associated to the 2-player minimum
time problem. We point out that this derivation is not easy as that for the 1-player
minimum time problem presented in section 1.2.3 due to the use of the nonanticipating
strategies. We have the following
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Proposition 1.23 1. If R\T is open and T ∈ C(R\T ), then T is a viscosity solution
of

min
b∈B

max
a∈A

{−f(x, a, b) · ∇T} − 1 = 0 , x ∈ R\T ; (1.47)

2. If v is continuous then it is a viscosity solution of

v +min
b∈B

max
a∈A

{−f(x, a, b) · ∇v} − 1 = 0 , x ∈ R
n\T . (1.48)

Proposition 1.24 v(x) is the unique viscosity solution of

{
v +min

b∈B
max
a∈A

{−f(x, a, b) · ∇v} − 1 = 0 x ∈ R
n\T

v = 0 x ∈ ∂T
(HJI)

Once we computed v, we can recover the optimal feedbacks as in the 1-player case (see
section 1.2.3)

(a∗(x), b∗(x)) := argmin
b∈B

max
a∈A

{−f(x, a, b) · ∇v} x ∈ R
n\T

and the optimal trajectory as the solution of

{
ẏ∗(t) = f(y∗(t), a∗(y∗(t)), b∗(y∗(t))) , t > 0
y∗(0) = x

1.4.1 Pursuit-Evasion games

In the case of Pursuit-Evasion games the vector field f and the target T have a particular
form so that the equation can be simplified. The problem is set in R

2n and we denote
the coordinates of the space by x = (xP , xE) where xP , xE ∈ R

n. Each player can control
only own dynamics, i.e. f has the form

f(x, a, b) = f(xP , xE , a, b) =

(
fP (xP , a)
fE(xE , b)

)
, fP , fE ∈ R

n

so that

min
b∈B

max
a∈A

{−∇v(x) · f(x, a, b)} =

min
b∈B

{max
a∈A

{−∇xP v(x) · fP (xP , a)−∇xEv(x) · fE(xE , b)}} =

min
b∈B

{−∇xEv(x) · fE(xE , b)}+max
a∈A

{−∇xP v(x) · fP (xP , a)}.

Then, equation (HJI) can be written as

{
v +min

b∈B
{−∇xEv · fE(xE , b)}+max

a∈A
{−∇xP v · fP (xP , a)} − 1 = 0 x ∈ R

n\T
v = 0 x ∈ ∂T

(1.49)

In this kind of games the target is

T = {(xP , xE) ∈ R
2n : |xP − xE | ≤ ε} , ε ≥ 0. (1.50)
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This choice means that the game ends when P touches E or P enters in a ball of radius
ε centered in E. Note that the target T , as defined above, is unbounded and then it is
unsuitable for a numerical solution of the problem.
Finally note that the behavior of the solution v can be very different if we choose in (1.50)
ε = 0 or ε ≥ ε0 > 0. Some games which show this particular behavior can be found in
the classical book of Isaacs [58]. See, for example, the wall pursuit game and the football
players game.

Tag-Chase game

As a model problem for Pursuit-Evasion games, we present here the classical Tag-Chase
game. In this game the two players can move in every direction of the space with an own
constant speed. The vector field has the form

f =

(
fP (xP , a)
fE(xE , b)

)
=

(
VP a
VE b

)
, VP , VE > 0 , a, b ∈ B(0, 1).

Equation (1.49) can be furthermore simplified as follows

0 = v(x) + min
b∈B(0,1)

{(−∇xEv(x) · b)VE}+ max
a∈B(0,1)

{(−∇xP v(x) · a)VP } − 1 =

v(x)− VE max
b∈B(0,1)

{(∇xEv(x) · b)}+ VP max
a∈B(0,1)

{(−∇xP v(x) · a)} − 1 =

v(x)− VE |∇xEv(x)|+ VP |∇xP v(x)| − 1 = 0. (1.51)

Reduced coordinates

The Tag-Chase game can be reformulated in a new coordinate system in order to reduce
the dimension of the problem.
We start noting that both players choose their strategy only considering their mutual
position and the problem is completely invariant with respect to any rigid motion of both
players. These considerations suggest the following new coordinate system

x̃ := xP − xE ,

so that the dynamics {
ẋP = VP a
ẋE = VE b

becomes
˙̃x = VP a− VE b.

Moreover, in this new coordinate system the target (1.50) becomes

T̃ = {x̃ ∈ R
n : |x̃| ≤ ε} , ε ≥ 0.

This new system (named relative coordinate system or reduced coordinates system) greatly
simplifies the numerical solution of the problem for three reasons:

1. The problem gets back to dimension n (instead of 2n);
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2. The target is bounded so that we can fix a domain Q containing T̃ and solving the
Isaacs equation in it;

3. The Dirichlet boundary condition we will have to impose on ∂Q changes meaning.
For example, fixing the value v = 1 (T = ∞) on ∂Q in the natural coordinate
system means that the Evader wins if he reaches the boundary of the domain and
this can change completely his strategy with respect to the exact strategy. In
reduced coordinate system the same boundary condition means that the Evader
wins whenever he is far from the Pursuer more then a given length. So he will try to
stay as far as possible from the Pursuer as he does in the natural coordinate system.

1.4.2 Pursuit-Evasion games with state constraints

In real applications it is useful to consider differential games with state constraints, where
the first player has to keep the system in a given set Ω1 ⊂ R

n and the second player in
Ω2 ⊂ R

n. The game is set in Ω ⊂ R
2n, where Ω := Ω1 × Ω2. We denote by xP and

xE respectively the coordinates of Ω1 and Ω2 so that x = (xP , xE) ∈ Ω. We assume for
simplicity T ⊂ Ω.
The dynamical system for the state y = (yP , yE) is





ẏP (t) = fP (y
P (t), a(t)) , t > 0

ẏE(t) = fE(y
E(t), b(t)) , t > 0

yP (0) = xP
yE(0) = xE

(1.52)

where
a(·) ∈ Ax :=

{
a ∈ A : yPx (t; a(·)) ∈ Ω1 for all t ≥ 0

}
, x ∈ Ω , (1.53)

b(·) ∈ Bx :=
{
b ∈ B : yEx (t; b(·)) ∈ Ω2 for all t ≥ 0

}
, x ∈ Ω. (1.54)

The modified sets of the admissible controls introduced in (1.53)-(1.54) allow to force the
system to respect the state constraints. Let Γx denote the set of nonanticipating strategies
for the first player, i.e. the functions α : Bx → Ax satisfying

b(t) = b̃(t) for all t ≤ t′ implies α[b](t) = α[b̃](t) for all t ≤ t′.

As in definition 1.21 we define the (lower) value function of the game as

T (x) := inf
α∈Γx

sup
b∈Bx

tx(α[b], b)

and its Kružkov transform
v(x) = 1− e−T (x).

Note that it is reasonable to drop the attribute ”lower” since in [22] it was proved that,
under suitable assumptions, Pursuit-Evasion games with state constraints have a value,
i.e. the lower value function coincides with the upper value function.
We write yPx (t; a) and yEx (t; b) to indicate respectively the solution of (1.52) whenever
a(t) ≡ a and b(t) ≡ b for some a ∈ A and b ∈ B.
Following [11, 59, 66] we will select subsets of admissible controls denoted by A(x) and
B(x), for x ∈ Ω\T

A(x) =
{
a ∈ A : there is r > 0 such that yPx′(t; a) ∈ Ω1 for t ∈ [0, r], x′ ∈ B(x, r) ∩ Ω1

}
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B(x) =
{
b ∈ B : there is r > 0 such that yEx′(t; b) ∈ Ω2 for t ∈ [0, r], x′ ∈ B(x, r) ∩ Ω2

}

Note that the set A(x) depends only on xP and B(x) only on xE . Moreover, we notice
that A(x) = A and B(x) = B provided xP ∈ Ω1 and xE ∈ Ω2, respectively. We will
always assume that A(x)×B(x) 6= ∅.
In [66] it is shown that v satisfies the following boundary value problem
{
v(x) + inf

b∈B(x)
{−∇xEv(x) · fE(xE , b)}+ sup

a∈A(x)
{−∇xP v(x) · fP (xP , a)} − 1 = 0 x ∈ Ω\T

v(x) = 0 x ∈ ∂T
(HJI-Ω)

Note that equation (HJI-Ω) must be interpreted in the viscosity sense due to the state
constraints boundary condition on ∂Ω and the fact that v can be not differentiable. See
[11] for an exact definition.
In order to provide sufficient conditions for the continuity of v, we need to introduce
further assumptions. Whenever we say that ω : [0,+∞)→ [0,+∞) is a modulus we mean
that ω is nondecreasing, it is continuous at zero and ω(0) = 0. The first assumption is
about the behavior of the value function v near the target T .

There is a modulus ω such that v(x) ≤ ω(d(x, T )) for all x ∈ Ω1 × Ω2. (C1)

where d(x, T ) = infz∈T {|x− z|}.
The second is a small time controllability assumption for the Pursuer.





There is ωP (·, R) modulus for all R > 0 such that

for all w1, w2 ∈ Ω1 there are a(·) ∈ Aw1 and t(w1, w2) ≥ 0
satisfying yPw1(t(w1, w2); a(·)) = w2 and t(w1, w2) ≤ ωP (|w1 − w2|, |w2|).

(C2)

The third is a small time controllability assumption for the Evader.




There is ωE(·, R) modulus for all R > 0 such that

for all z1, z2 ∈ Ω2 there are b(·) ∈ Bz1 and t(z1, z2) ≥ 0
satisfying yEz1(t(z1, z2); b(·)) = z2 and t(z1, z2) ≤ ωE(|z1 − z2|, |z2|).

(C3)

The proof of the next theorem can be found in [11].

Theorem 1.25 Assume that (C1), (C2) and (C3) hold. Then, under our assumptions
on f , the value function v is continuous in Ω1 × Ω2 .

1.5 Semi-Lagrangian approximation for Hamilton-Jacobi

equations

In this section we recall how to obtain a convergent numerical scheme for Hamilton-Jacobi
equations. As a model we will consider the minimum time problem for one player and
two players described in previous sections. In our approach the numerical approximation
is based on a time-discretization of the original control problem via a discrete version of
the Dynamic Programming Principle. Then, the functional equation for the time-discrete
problem is ”projected” on a grid to derive a finite dimensional fixed point problem. We also
show how to obtain the same numerical scheme by a direct discretization of the directional
derivatives in the continuous equation. Note that the scheme we study is different to that
obtained by a Finite Difference approximation. In particular, our scheme has a built-in
up-wind correction.



Semi-Lagrangian approximation for Hamilton-Jacobi equations 27

1.5.1 Semi-Lagrangian schemes for optimal control problems

The aim of this section is to build a numerical scheme for equation (HJB). In order to
do this, we first make a discretization of the original control problem (DS) introducing a
time step h = ∆t > 0.
We obtain a discrete dynamical system associated to (DS) just using any one-step scheme
for the Cauchy problem. A well known example is the explicit Euler scheme which
corresponds to the following discrete dynamical system

{
yn+1 = yn + hf(yn, an) , n = 1, 2, . . .
y0 = x

(DSh)

where yn = y(tn) and tn = nh. We will denote by yx(n; {an}) the state at time nh of
the discrete time trajectory verifying (DSh). Let us define the discrete analogue of the
admissible controls

Ah := {{an}n∈N : an ∈ A for all n}
and that of the reachable set

Rh :=
{
x ∈ R

n : there exists {an} ∈ Ah and n̄ ∈ N such that yx(n̄; {an}) ∈ T
}
.

Let us also define

nh(x, {an}) :=
{

min{n ∈ N : yx(n; {an}) ∈ T } x ∈ Rh

+∞ x /∈ Rh

and
Nh(x) := inf

{an}∈Ah
nh(x, {an}).

The discrete analogue of the minimum time function T (x) is Th(x) := hNh(x)

Proposition 1.26 (Discrete Dynamic Programming Principle) Let h > 0 fixed.
For all x ∈ Rh, 0 ≤ n < Nh(x) (so that x /∈ T )

Nh(x) = inf
{an}∈Ah

{n+Nh(yx(n; {an}))}. (1.55)

The proof of the Proposition 1.26 can be found in [8]. Choosing n = 1 in (1.55) and
multiplying by h we obtain the time-discrete Hamilton-Jacobi-Bellman equation

Th(x) = min
a∈A

{Th(x+ hf(x, a))}+ h. (1.56)

Note that we can obtain the equation (1.56) also by a direct discretization of equation
(1.18)

0 = max
a∈A

{−f(x, a) · ∇T (x))} − 1 ≈ max
a∈A

{
−Th(x+ hf(x, a))− Th(x)

h

}
− 1

and, multiplying by h,

−min
a∈A

{Th(x+ hf(x, a))− Th(x)} − h = −min
a∈A

{Th(x+ hf(x, a))}+ Th(x)− h = 0.
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As in the continuous problem, we apply the Kružkov change of variable

vh(x) = 1− e−Th(x).

Note that, by definition, 0 ≤ vh ≤ 1 and vh has constant values on the set of initial points
x which can be driven to T by the discrete dynamical system in the same number of steps
(of constant width h). This shows that vh is a piecewise constant function. By (1.56) we
easily obtain that vh satisfies

vh(x) = min
a∈A

{βvh(x+ hf(x, a))}+ 1− β

where β = e−h and we have the following

Proposition 1.27 vh is the unique bounded solution of
{
vh(x) = min

a∈A
{βvh(x+ hf(x, a))}+ 1− β x ∈ R

n\T
vh(x) = 0 x ∈ ∂T

(HJBh)

Note that the time step h we introduced for the discretization of the dynamical system is
still present in the time-independent equation (HJBh) and then it will be interpreted as
a fictitious time step.

Definition 1.28 Assume ∂T smooth. We say that the Small Time Local Controllability
(STLC) assumption is verified if

for any x ∈ ∂T , there exists â ∈ A such that f(x, â) · η(x) < 0 (1.57)

where η(x) is the exterior normal to T at x.

Theorem 1.29 Let T be compact with nonempty interior. Then, under our assumptions
on f and STLC, vh converges to v locally uniformly in R

n for h→ 0+.

Fully discrete scheme

In order to solve the problem numerically we need to project equation (HJBh) on a finite
grid. First of all, we restrict our problem to a compact subdomain Q containing T and we
build a regular triangulation of Q denoting byX the set of its nodes xi, i ∈ I := {1, . . . , N}
and by S the set of simplices Sj , j ∈ J := {1, . . . , L}. Let us denote by k the size of the
mesh i.e. k = ∆x := maxj{diam(Sj)}. Note that one can always decide to build a
structured grid for Q as it is usual for Finite Difference scheme, although for dynamic
programming/semi-Lagrangian scheme this is not an obligation. Main advantage of using
structured grid is that one can easily find the simplex containing the point xi + hf(xi, a)
for every node xi and every control a ∈ A and make interpolations.
We will divide the nodes into three subsets, the algorithm will perform different operations
in the three subsets.

IT = {i ∈ I : xi ∈ T }
Iin = {i ∈ I\IT : there exists a ∈ A such that xi + hf(xi, a) ∈ Q}
Iout = {i ∈ I\IT : xi + hf(xi, a) /∈ Q for all a ∈ A}
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Now we can define the fully discrete scheme simply writing (HJBh) at every node of the
grid adding the boundary condition on ∂Q





vkh(xi) = min
a∈A

{βvkh(xi + hf(xi, a))}+ 1− β i ∈ Iin
vkh(xi) = 0 i ∈ IT
vkh(xi) = 1 i ∈ Iout

vkh(x) =
∑

j λj(x)v
k
h(xj) , 0 ≤ λj(x) ≤ 1 ,

∑
j λj(x) = 1 x ∈ Q

(HJBk
h)

Let us make a number of remarks on the above scheme:

1. The function vkh is extended on the whole space Q in a unique way by linear
interpolation, i.e. as a convex combination of the values of vkh(xi), i ∈ I. It should
be noted that one can choose any other interpolation operator.

2. The condition on Iout assigns to those nodes a value greater than the maximum value
inside Q. It is like saying that once the trajectory leaves Q it will never come back
to T (which is obviously false). Nonetheless the condition is reasonable since we will
never get the information that the real trajectory (living in the whole space) can get
back to the target unless we compute the solution in a larger domain containing Q.
In general, the solution will be correct only in a subdomain of Q and it is greater
than the real solution everywhere in Q. This means also that the solution we get
strictly depends on Q (see also [79] on this point).

3. By construction, vkh belongs to the set

W k := {w : Q→ [0, 1] such that w ∈ C(Q),∇w = constant in Sj , j ∈ J} (1.58)

of the piecewise linear functions.

We map all the values at the nodes onto a N -dimensional vector V = (V1, . . . , VN ) so that
we can rewrite (HJBk

h) in a fixed point form

V = F (V ) (1.59)

where F is defined componentwise as follows

[F (V )]i :=





min
a∈A

{β∑j λj(xi + hf(xi, a))Vj}+ 1− β i ∈ Iin
0 i ∈ IT
1 i ∈ Iout

(1.60)

Theorem 1.30 The operator F defined in (1.60) has the following properties:

(i) F is monotone, i.e. U ≤ V implies F (U) ≤ F (V );

(ii) F : [0, 1]N → [0, 1]N ;

(iii) F is a contraction mapping in the max norm ‖W‖∞ = max
i∈I

|Wi|

‖F (U)− F (V )‖∞ ≤ β‖U − V ‖∞.
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Corollary 1.31 (HJBk
h) has a unique solution in W k. Moreover, the solution can be

approximated by the fixed point sequence

V (n+1) = F (V (n)) (1.61)

starting from any initial guess V (0) ∈ R
N .

A typical choice for V (0) is

V
(0)
i =

{
0 i ∈ IT
1 elsewhere

which guarantees a monotone decreasing convergence to the fixed point V ∗.

For a convergence result regarding the fully-discrete value function vkh we refer to the
following section where we will consider the discretization of differential games. In fact,
any optimal control problem can be seen as a particular 2-player differential game in which
the set of admissible controls for one player is just a singleton (in other words, one player
has a fixed strategy).

It is also interesting to remark that in the algorithm the information flows from the target

to the other nodes of the grid. In fact, on the nodes in Q\T we start from V
(0)
i = 1

but these values immediately decrease in a neighborhood of T since the Euler scheme
drives them to the target in just one step. At the next iteration other values, in a
larger neighborhood of T , will decrease due to the same mechanism and so on. This
fact obviously relies on the hyperbolic nature of the equation and it is the basic idea the
Fast Marching technique stems from. Moreover, the numerical evidence shows that the
fixed point iterations converge in a finite number of steps, i.e. when the information has
propagated from the target to the whole space Q.

1.5.2 Semi-Lagrangian schemes for differential games

The aim of this section is to build a numerical scheme for equation (HJI). In order to do
this, we proceed as in the previous section considering the following discrete dynamical
system {

yn+1 = yn + hf(yn, an, bn) , n = 1, 2, . . .
y0 = x

(1.62)

We will denote by yx(n; {an}, {bn}) the state at time nh of the discrete time trajectory
verifying (1.62). Let us define the discrete analogue of the admissible controls

Ah := {{an}n∈N : an ∈ A for all n} , Bh := {{bn}n∈N : bn ∈ B for all n} .

In order to define the value of the game we need the notion of discrete nonanticipating
strategy.

Definition 1.32 A strategy for the first player is a map α : Bh → Ah; it is
nonanticipating if α ∈ Γh, where

Γh = {α : Bh → Ah : bn = b̃n for all n ≤ n′ implies α[{bk}]n = α[{b̃k}]n for all n ≤ n′}.
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Let us define the discrete analogue of the reachable set

Rh :=
{
x ∈ R

n : for all {bn} ∈ Bh there exists α ∈ Γh and n̄ ∈ N such that

yx(n̄;α[{bn}], {bn}) ∈ T
}
. (1.63)

Then we define

nh(x, {an}, {bn}) :=
{

min{n ∈ N : yx(n; {an}, {bn}) ∈ T } x ∈ Rh

+∞ x /∈ Rh

and
Nh(x) := inf

α∈Γh
sup

{bn}∈Bh
nh(x, α[{bn}], {bn}).

The discrete analogue of the (lower) value of the game T (x) is Th(x) := hNh(x).

Theorem 1.33 (Discrete Dynamic Programming Principle) Let h > 0 fixed. For
all x ∈ Rh, 0 ≤ n < Nh(x) (so that x /∈ T )

Nh(x) = inf
α∈Γh

sup
{bn}∈Bh

{n+Nh(yx(n;α[{bn}], {bn}))}. (1.64)

The proof of Theorem 1.33 traces the proof of Theorem 1.22 (Dynamic Programming
Principle) once we define the sets of piecewise constant controls

a(t) := an t ∈ [nh, (n+ 1)h] , n ∈ N

and
b(t) := bn t ∈ [nh, (n+ 1)h] , n ∈ N.

Similarly to the 1-player case, but with more technicalities due to the use of nonanticipating
strategies, we can prove that Th solves the following time-discrete Hamilton-Jacobi-Isaacs
equation (see [7, 13])

Th(x) = max
b∈B

min
a∈A

{Th(x+ hf(x, a, b))}+ h x ∈ Rh\T (1.65)

and
vh(x) = max

b∈B
min
a∈A

{βvh(x+ hf(x, a, b))}+ 1− β x ∈ R
n\T . (1.66)

where vh(x) = 1 − e−Th(x). Note that we can obtain the equation (1.66) also by a direct
discretization of equation (HJI)

0 = v(x) + min
b∈B

max
a∈A

{−∇v(x) · f(x, a, b)} − 1 ≈

vh(x) + min
b∈B

max
a∈A

{
−vh(x+ hf(x, a, b))− vh(x)

h

}
− 1 =

vh(x) + min
b∈B

max
a∈A

{
−1

h
vh(x+ hf(x, a, b))

}
+

1

h
vh(x)− 1

so we get

vh(x) =

(
1

1 + h

)
max
b∈B

min
a∈A

{vh(x+ hf(x, a, b))}+ h

1 + h
. (1.67)
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Since it is a first order scheme, we can substitute the constant 1
1+h by β = e−h having

e−h =
1

1 + h
+O(h2).

Let us define the space W as

W := {w : R
n → [0, 1]}

and the operator F as

F [w](x) := max
b∈B

min
a∈A

{βw(x+ hf(x, a, b))}+ 1− β. (1.68)

Theorem 1.34 The operator F defined in (1.68) has the following properties:

(i) F :W →W ;

(ii) F is a contraction mapping in the L∞ norm, i.e.

‖F [v]− F [w]‖∞ ≤ β‖v − w‖∞.

Proof . (i) Since w(z) ∈ [0, 1] for every z ∈ R
n, we have

0 < 1− β ≤ βw(x+ hf(x, a, b)) + 1− β ≤ 1 for every x, a, b

and then F [w](x) ∈ [0, 1] for every x ∈ R
n.

(ii) We have

F [v](x)− F [w](x) = βmax
b∈B

min
a∈A

{v(x+ hf(x, a, b))} − βmax
b∈B

min
a∈A

{w(x+ hf(x, a, b))}.

Let b∗ be the control such that

b∗ = argmax
b∈B

{min
a∈A

{v(x+ hf(x, a, b))}}

and let a∗ be the control such that

a∗ = argmin
a∈A

{w(x+ hf(x, a, b∗))}}.

Then,

F [v](x)− F [w](x) ≤ βmin
a∈A

{v(x+ hf(x, a, b∗))} − βmin
a∈A

{w(x+ hf(x, a, b∗))}
≤ βv(x+ hf(x, a∗, b∗))− βw(x+ hf(x, a∗, b∗)) ≤ β‖v − w‖∞.

Swapping the role of v and w we easily conclude. ¥

Proposition 1.35 vh is the unique bounded solution of
{
vh(x) = max

b∈B
min
a∈A

{βvh(x+ hf(x, a, b))}+ 1− β x ∈ R
n\T

vh(x) = 0 x ∈ ∂T
(HJIh)
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Fully discrete scheme

As in the case of minimum time problem for one player, we need to project equation
(HJIh) on a finite grid. First of all, we restrict our problem to a compact subdomain Q
containing T and we build a regular triangulation of Q denoting by X the set of its nodes
xi, i ∈ I := {1, . . . , N} and by S the set of simplices Sj , j ∈ J := {1, . . . , L}. We denote
by k the size of the mesh i.e. k = ∆x := maxj{diam(Sj)}. As in the case of a single
player we need to impose boundary condition on ∂Q. However, the situation for games is
much more complicated. In fact, setting the value of the solution outside Q equal to 1 (as
in the 1-player case) will imply that the Pursuer looses every time the Evader drives the
dynamics outside Q. On the contrary, setting the value to 0 outside Q will give a great
advantage to the Pursuer. We will not take the matter further because in the following we
will consider either state constraint boundary condition (so the trajectory can not leave
Q) or we will get rid of the problem by means of the reduced coordinates (see Section
1.4.1).
The discretization in time and in space leads to a fully-discrete scheme





vkh(xi) = max
b∈B

min
a∈A

{βvkh(xi + hf(xi, a, b))}+ 1− β xi ∈ Iin
vkh(xi) = 0 xi ∈ IT

vkh(x) =
∑

j λj(x)v
k
h(xj) , 0 ≤ λj(x) ≤ 1 ,

∑
j λj(x) = 1 x ∈ Q

(HJIkh)

where

IT = {i ∈ I : xi ∈ T }
Iin = {i ∈ I\IT : xi + hf(xi, a, b) ∈ Q for any a ∈ A, b ∈ B}.

As mentioned above, we leave off all issues about those nodes which are in Q but not in
IT ∪ Iin.
Note that, as in the 1-player case, vkh belongs to the set W k defined in (1.58).
We map all the values at the nodes onto a N -dimensional vector V = (V1, . . . , VN ) so that
we can write (HJIkh) in a fixed point form

V = F (V ) (1.69)

where F is defined componentwise as follows

[F (V )]i :=

{
max
b∈B

min
a∈A

{β∑j λj(xi + hf(xi, a, b))Vj}+ 1− β i ∈ Iin
0 i ∈ IT

(1.70)

Theorem 1.36 The operator F defined in (1.70) has the following properties:

(i) F is monotone, i.e. U ≤ V implies F (U) ≤ F (V );

(ii) F : [0, 1]N → [0, 1]N ;

(iii) F is a contraction mapping in the max norm ‖W‖∞ = max
i∈I

|Wi|

‖F (U)− F (V )‖∞ ≤ β‖U − V ‖∞.
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The proof can be found in [10].

Corollary 1.37 (HJIkh) has a unique solution in W k. Moreover, the solution can be
approximated by the fixed point sequence

V (n+1) = F (V (n)) (1.71)

starting from any initial guess V (0) ∈ R
N .

Proposition 1.38 Let T be the closure of an open set with Lipschitz boundary. Let wm

be the solution of HJIkh with Q = Qm, h = hm, k = km such that

hm → 0 ,
km
hm

→ 0 as m→∞

and
Qm+1 ⊇ Qm for all m ∈ N ,

⋃

m

Qm = R
n.

Let v be the bounded continuous viscosity solution of (HJI).
Then, wm converges to v as m→∞ uniformly on any compact set of R

n.

The proof of Proposition 1.38 can be found in [10]. The interested reader can find an error
estimate for the quantity ‖vkh − v‖∞ in terms of h and k in [87].

Remark 1.39 Once we constructed the fully-discrete scheme, we need an extra work in
order to make the problem completely finite-dimensional. In fact, if the sets A and B are
constituted by an infinite number of points, we have either to choice a finite selection of
them or choice a numerical method to evaluate the maxmin (or the min in the 1-player
case). In both cases we have to add a further numerical error to those already considered
in the discretization. In section 3.2.1 we will see how we can avoid this error at least in
the 1-player minimum time problem.

SL scheme for Pursuit-Evasion games

In section 1.4.1 we presented the Pursuit-Evasion games as a particular case of differential
game. The time-discrete semi-Lagrangian scheme for the (simplified) equation (1.49) can
be obtained by a direct discretization of the directional derivatives as before.

vh(x)+min
b∈B

{
−vh(xP , xE + hfE)− vh(xP , xE)

h

}
+max

a∈A

{
−vh(xP + hfP , xE)− vh(xP , xE)

h

}
−1 =

vh(x) +min
b∈B

{
−1

h
vh(xP , xE + hfE)

}
+
vh(x)

h
+max

a∈A

{
−1

h
vh(xP + hfP , xE)

}
+
vh(x)

h
− 1

then the final equation is
vh(xP , xE) = G[vh](xP , xE) (1.72)

where

G[v](xP , xE) :=
1

2 + h
max
b∈B

{v(xP , xE + hfE)}+
1

2 + h
min
a∈A

{v(xP + hfP , xE)}+
h

2 + h
. (1.73)

As in games with a general dynamics (see Theorem 1.34), we have the following result
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Theorem 1.40 The operator G defined in (1.73) has the following properties:

(i) G :W →W ;

(ii) G is a contraction mapping in the L∞ norm, i.e.

|G[v](x)−G[w](x)| ≤ λ||v − w||∞, λ < 1.

Proof . We prove only (ii).

G[v](x)−G[w](x) =
1

2 + h
max
b∈B

{v(xP , xE + hfE)}+
1

2 + h
min
a∈A

{v(xP + hfP , xE)}

− 1

2 + h
max
b∈B

{w(xP , xE + hfE)} −
1

2 + h
min
a∈A

{w(xP + hfP , xE)} =
1

2 + h
max
b∈B

{v(xP , xE + hfE)}+
1

2 + h
max
a∈A

{−w(xP + hfP , xE)}

− 1

2 + h
max
a∈A

{−v(xP + hfP , xE)} −
1

2 + h
max
b∈B

{w(xP , xE + hfE)}.

Let

a∗ := argmax
a∈A

{−w(xP + hfP , xE)} and b∗ := argmax
b∈B

{v(xP , xE + hfE)} ,

then

G[v](x)−G[w](x) ≤

≤ 1

2 + h
v(xP , xE + hfE(xE , b

∗)) +
1

2 + h

(
− w(xP + hfP (xP , a

∗), xE)
)

− 1

2 + h

(
− v(xP + hfP (xP , a

∗), xE)
)
− 1

2 + h
w(xP , xE + hfE(xE , b

∗)) ≤

≤ 1

2 + h
||v − w||∞ +

1

2 + h
||v − w||∞ =

2

2 + h
||v − w||∞.

Changing the role of v and w we obtain

G[v](x)−G[w](x) ≤ 2

2 + h
||v − w||∞

and this concludes the proof. ¥

Equation (1.72) must be carefully compared with equation (1.67). In particular, it is
important to select the most convenient equation for numerical purposes.

Remark 1.41 Since
1

1 + h
<

2

2 + h
for all h > 0

the convergence of the simplified scheme for Pursuit-Evasion games (1.72) is expected to
be slower than that of the general scheme (1.67). This is confirmed by the numerical tests
we did. On the other hand, every iteration of (1.72) is faster than that of (1.67) since
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the evaluation of the max and the min is faster than that of the maxmin. In fact, if we
denote by nc the number of points which constitute the discrete version of the sets A and B
(see Remark 1.39), the algorithm associated to the equation (1.72) needs 2nc evaluations
of f whereas the algorithm associated to the equation (1.67) needs n2c evaluations of f . In
conclusion, the CPU times are comparable.

Finally, note that once we have abandoned equation (HJI) for the time-discrete equation
(HJIh), we can no longer take into account the particular form of the dynamics for Pursuit-
Evasion games in order to simplify the equation. This is probably the justification of the
fact that the particular case (1.72) works worse than the general case (1.67).



Chapter 2

Fast Marching methods

In this chapter we give an overview of fast and efficient numerical methods for Hamilton-
Jacobi equations developed in the last ten years. All the literature on this subject
mainly stems from a paper by Tsitsiklis [97] in which the author introduced a Dijkstra-
like algorithm to solve efficiently the discretized Hamilton-Jacobi equation associated
to a particular minimum time problem. One year later, Sethian [85] refined Tsitsiklis’
arguments introducing the so-called Fast Marching (FM) method for the eikonal equation
modelling the monotone front propagation. This method will be extensively studied in
the first section and in Chapter 3.
Later on, some authors improved the FM method in order to make it more efficient. For
example, Kim [63] introduced the Group Marching (GM) method and Chopp [28] extended
the FM method to high order approximation. Sethian himself proposed a wide class of
applications for FM method (see, among others, [64, 65]).
More recently, some authors tried to modify the FM method in order to deal with more
general equations. Sethian and Vladimirsky [86] introduced an extension which covers
a wider class of equations including the monotone anisotropic front propagation and
Vladimirsky [98] introduced an extension which covers the front evolution with time-
depending velocity. Prados [79] suggested a modification which allows to deal with quite
general Hamilton-Jacobi equations provided a subsolution of the equation is given. In
parallel, other authors competed with FM method introducing the so-called Fast Sweeping
(FS) method which provides a very efficient technique in order to speed up the classical
iterative algorithm (see for example [100, 96, 80, 61, 62]).

2.1 Fast Marching method

The classical Fast Marching method based on finite differences (FM-FD in the sequel) has
been proposed by Sethian in 1996 [85] as an acceleration method for the monotone first
order iterative finite difference scheme for the following eikonal equation modelling a front
which evolves monotonically along its normal direction

c(x)|∇T (x)| = 1 , x ∈ R
n\Ω0 , c > 0 (2.1)

complemented with the Dirichlet boundary condition

T (x) = 0 , x ∈ ∂Ω0. (2.2)
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The basic finite difference algorithm is based on an iterative procedure T (n+1) = F (T (n))
which computes the approximate solution everywhere in R

n \ Ω0 at every iteration. The
FM-FD method instead follows the front concentrating the computational effort where
is needed, i.e. in a small neighborhood of the front, and it updates that neighborhood
at every iteration to avoid useless computations. This is done dividing the grid nodes
into three subsets: far nodes, accepted nodes and narrow band nodes. The narrow band
nodes are the nodes where the computation actually takes place and their value can still
change at the following iterations. The accepted nodes are those where the solution has
been already computed and where the value can not change in the following iterations.
Finally, the far nodes are the remaining nodes where an approximate solution has never
been computed. In physical terms, the far nodes are those in the space region which has
never been touched by the front, the accepted nodes are those where the front has already
passed through and the narrow band nodes are, iteration by iteration, those lying in a
neighborhood of the front (see Fig. 2.1).

far

far

far

far

far

accepted

narrow band

narrow band

Figure 2.1: far, narrow band and accepted nodes

The algorithm starts labeling as accepted only the nodes belonging to the initial front,
i.e. belonging to Γ0 = ∂Ω0, and ends only when all the nodes have been accepted. In
this section, we will briefly sketch the FM-FD scheme for (2.1)-(2.2). In order to avoid
cumbersome notations we will restrict the presentation to the case n = 2. In the sequel, we
will always consider the case of a positive velocity, i.e. we assume c(x) > 0 to guarantee
a monotone (increasing) evolution of the front. The results in this section can be easily
generalized to the n-dimensional case and to the case c(x) < 0.
We will take a square Q large enough to contain Ω0, this is the domain where we want
to compute T . Boundary conditions will be given on ∂Q and Γ0 but, as a first step, we
will consider the algorithm without boundary conditions on ∂Q. The implementation of
boundary conditions in the scheme will be discussed later on at the end of section 3.2.2.
We will assume to work on a structured grid of M × N nodes (xi, yj), i = 1, . . . , N and
j = 1, . . .M . ∆x and ∆y will denote the (uniform) discretization steps respectively on the
x and y axis. We will denote by Ti,j and ci,j respectively the values of T and c at (xi, yj).
Let us write (2.1) as

T 2
x + T 2

y =
1

c2(x, y)
. (2.3)

We replace the partial derivatives Tx and Ty by first order finite differences and we choose
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for simplicity M = N and ∆x = ∆y.

Tx(xi, yj) ≈
Ti,j − Ti−1,j

∆x
Ty(xi, yj) ≈

Ti,j − Ti,j−1

∆x

or

Tx(xi, yj) ≈
Ti+1,j − Ti,j

∆x
Ty(xi, yj) ≈

Ti,j+1 − Ti,j
∆x

.

It is well known that, in order to obtain an approximation of the viscosity solution, an
up-wind correction must be introduced. This leads to the following equation

(
max

{
max

{
Ti,j − Ti−1,j

∆x
, 0

}
,−min

{
Ti+1,j − Ti,j

∆x
, 0

}})2

+

+

(
max

{
max

{
Ti,j − Ti,j−1

∆x
, 0

}
,−min

{
Ti,j+1 − Ti,j

∆x
, 0

}})2

=
1

c2i,j
. (2.4)

Let us note that the above discretization differs from another popular up-wind correction
which is the so-called minmod scheme

1

∆x2
minmod2(Ti+1,j − Ti,j , Ti,j − Ti−1,j) +

+
1

∆x2
minmod2(Ti,j+1 − Ti,j , Ti,j − Ti,j−1) =

1

c2i,j
(2.5)

where

minmod(a, b) =





a if |a| < |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

.

The main difference is that (2.5) sets to 0 the value of the derivative whenever the right
and the left derivative have different signs whereas (2.4) always chooses the derivative with
maximum absolute value. It should be noted that the two schemes do not coincide also
when the right and left derivatives have the same sign.
Let us briefly recall the main definitions and steps of the FM-FD method.

Definition 2.1 (Neighboring nodes for the FD scheme) Let X = (xi, yj) be a
node. We define the set of neighboring nodes to X as

NFD(X) =
{
(xi+1, yj), (xi−1, yj), (xi, yj+1), (xi, yj−1)

}
.

These are the nodes appearing in the stencil of the first order finite difference discretization.
The definition can be easily extended to the n-dimensional case.

Sketch of the FM-FD algorithm

Initialization (see Figure 2.2)

1. The nodes belonging to the initial front Γ0 are located and labeled as accepted. Their
value is set to T = 0 (they form the set Γ̃0).
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2. The initial narrow band is defined taking the nodes belonging to NFD(Γ̃0), external
to Γ0. These nodes are labeled as narrow band, setting the value to T = ∆x

c .

3. The remaining nodes are labeled as far, their value is set to T = +∞ (in practice,
the maximum floating point number).

Figure 2.2: Initialization for FM-FD method, case c > 0

Main Cycle

1. Among all the nodes in the narrow band we search for the minimum value of T . Let
us denote this node by A.

2. A is labeled as accepted and it is removed from the narrow band.

3. The nodes in NFD(A) which are not accepted are labeled as active. If among these
nodes there are nodes labeled as far, they are transferred to the narrow band.

4. The value of T in the nodes active is computed (or recomputed) solving the second
order equation (2.4) and taking the largest root.

5. If the narrow band is not empty go back to 1.

Note that the narrow band is a reasonable approximation of the level set of T (x, y).
The main interest in the FM-FD method is that its computational cost is bounded. In
fact, every node can not be accepted more than one time and every node has just four
neighbors, so the bound on the maximum number of times a single node can be recomputed
is four. This corresponds to a computational cost of O(N) where N is the total number
of nodes. We should add to that cost the search for the minimum value of T among the
nodes in the narrow band which costs O(ln(Nnb)) where Nnb is the number of nodes in the
narrow band. In conclusion, the algorithm has a global cost of O(N ln(Nnb)) operations
(see [97], [84], [85] for further details on the computational cost). This is not the case for
the usual iterative/fixed point algorithm approximating the solution of a general optimal
control problem since in that case the approximate solution is obtained in the limit and, in
practice, no one knows when the stopping criterion will apply, i.e. the maximum number
of iterations is virtually unbounded.
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2.2 Fast Marching methods for more general equations

Since its first presentation, many people tried to adapt the FM method to more general
equations due to its great efficiency. Unfortunately this seems to be a difficult task
since the method strictly relies on its physical interpretation based on the isotropic front
propagation problem. From the mathematical point of view, it appears that labeling as
accepted the node in the narrow band with the minimal value is suitable only in the case
the characteristic curves of the equation coincide with the gradient lines of its solution.
This is due to the fact that accepting the minimal value in the narrow band means to
compute T in the ascending order and then to maintain the right upwinding only in the
case the optimal control a∗ satisfies

a∗(x) := arg max
a∈B(0,1)

{−f(x, a) · ∇T (x)} = − ∇T (x)
|∇T (x)| (2.6)

(see (1.30) and all Section 1.3). In [86] it is extensively studied an example in which
this problem arises. Consider the eikonal equation |∇d| = 1 complemented by Dirichlet
boundary condition d(0, 0) = 0 in a plane z = λx + µy for some vector (λ, µ). The level
sets of d (i.e. the front) will be just the circles around the origin in that plane. Although
the problem is set in R

3 it can be reduced to a two-dimensional problem considering the
projection of the front onto the underlying x− y plane and then solving a modified front
propagation problem in the x− y plane. The speed of the front in the projected problem
is given by

f(x, y, a) = ĉ(x, y, a)a , a ∈ B(0, 1)

where

ĉ(x, y, a1, a2) =
1√

1 + (λa1 + µa2)2
.

The function T (x, y) whose level sets are the front in the projected problem is

T (x, y) =
√

(1 + λ2)x2 + (1 + µ2)y2 + 2λµxy (2.7)

and it is a viscosity solution of

max
a∈A

{−ĉ(x, y, a)a · ∇T (x, y)} − 1 = 0 (2.8)

or, in a equivalent way, of

√
(1 + µ2)T 2

x + (1 + λ2)T 2
y − 2λµTxTy

1 + λ2 + µ2
= 1.

If we now consider the particular case λ = 1, µ = 0, (x, y) = (1, 1) we obtain, by (2.7) and
(2.8)

a∗(1, 1) =
(−1,−1)√

2
and −∇T (1, 1) = (−2,−1)√

3

(see Fig. 2.3). This example shows that in an optimal control problem with general n-
dimensional dynamics f(x, a) we expect that the characteristic and the gradient directions
are different and that a simplex S(x) may contain the characteristic for the node x even
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Figure 2.3: gradients vs characteristic directions
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Figure 2.4: gradients vs characteristic directions at discrete level

if the direction −∇T (x) is not contained into that simplex (see Fig. 2.4). This is an
intrinsic problem with Dijkstra-like methods: to produce the numerical solution these
methods attempt to compute T in the ascending order (i.e. from the simplex containing
−∇T ), whereas, in order to maintain the upwinding, T (x) has to be computed from the
simplex containing the characteristic.
Taking into account these considerations, Sethian and Vladimirky [86] extended the FM
method to the following equation modelling the anisotropic front propagation

c

(
x,
∇T
|∇T |

)
|∇T | = 1 , x ∈ R

n\Ω0 , c > 0 (2.9)

which can be seen as an equation of the form (1.20) in the special case f(x, a) = c(x, a)a
and A = B(0, 1). The computational complexity of the proposed algorithm increases with
respect the standard FM method and becomes of O(Υn−1N ln(N)) where N is the total
number of nodes and Υ is an anisotropy coefficient defined by

Υ :=
maxx,a c(x, a)

minx,a c(x, a)
.
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This is due to the fact that the scheme makes use of more simplices than those in the
neighborhood of the considered point.

Finally, let us mention that Prados [79] proposed a modified FM method which can deal
with a generic Hamilton-Jacobi-Bellman equation of the form

λF (u(x)) + sup
a∈A
{−f(x, a) · ∇u(x)− l(x, a)} = 0 , x ∈ Ω (2.10)

where Ω is an open set of R
n, λ ≥ 0, and F : R → R is a strictly increasing function. Note

that in this case the cost function l is not assumed to be positive so that the solution of the
equation does not necessarily increase along the characteristic curves and, of course, the
characteristic curves does not coincide in general with the gradient lines. The proposed
algorithm is identical to the standard FM method in all the steps but when the node to
be accepted is chosen. Here we have to choose the node with the minimal value of u− ψ
(instead of u), ψ being any subsolution of the considered equation, i.e.

λF (ψ(x)) + sup
a∈A
{−f(x, a) · ∇ψ(x)− l(x, a)} ≤ 0 , x ∈ Ω.

Prados successfully applied this scheme to Hamilton-Jacobi equations related to Shape-
from-Shading problems since for those equations it is possible to recover a subsolution (see
[76]).
Obviously all difficulties mentioned above related to the research of the characteristic
directions are shifted onto the research of a subsolution of the equation.

2.3 Group Marching method

The Group Marching (GM) method has been introduced by Kim [63] to solve the eikonal
equation (2.1)-(2.2) on a structured grid by a discretization as that in FM-FD.
Let us denote by Γ the set of nodes belonging to the narrow band and let us choose
∆x = ∆y.
Define

TΓ,min = min{Ti,j | (xi, yj) ∈ Γ}
cΓ,max = max{ci,j | (xi, yj) ∈ Γ}.

The GM method labels as accepted, at the same time, all the nodes belonging to the set
G defined by

G :=

{
(xi, yj) ∈ Γ : Ti,j ≤ TΓ,min +

∆x√
2

1

cΓ,max

}
. (2.11)

The procedure described above is justified by the fact that all the values in G can not
be in principle affected by the future updates of the other nodes and then it is safe to
accepted them all at a time. In fact, a value of a node can be considered ”not modifiable”
if it is lower then the minimal value in the narrow band plus the time needed to cover the
minimal distance with the maximal velocity. Considering that the position of the front
must be recovered by interpolation of the values on the nodes, the minimal distance on

a structured grid between a node and the front is
√
2
2 ∆x, which corresponds to the half-

diagonal of a square cell with side ∆x (see Fig. 2.5).
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narrow band

accepted

far

Figure 2.5: minimal distance between the front and a node considering that the position
of the front must be recovered by interpolation of the values on the nodes

At every iteration the up-date of the narrow band is obtained as in FM-FD method,
including the four neighbors of every node that has been labeled as accepted. It is clear
that if the set G is large the GM method can be much faster than FM-FD method because
more than one node at a time is accepted. On the other hand, it is rather difficult to give
an estimate of the acceleration parameter since the cardinality of G depends on the values
{Ti,j : (xi, yj) ∈ Γ} and on the velocity of propagation. It could be that

G = {TΓ,min}

and this would imply a computational cost O(N ln(Nnb)) instead of getting O(N) as one
would expect by some tests in [63]. Moreover, it should be noted that, in order to avoid
possible instabilities, it is necessary to update all the neighboring points of the group G
twice, increasing the computational cost.

2.4 Fast Sweeping method

The Fast Sweeping (FS) method is based on an idea first introduced in [41] and it was
extensively analyzed in [100] and [96]. The crucial idea is that the algorithm sweeps the
whole (two-dimensional) domain with four alternating orderings repeatedly

(1) i = 1, . . . , N , j = 1, . . . ,M (2) i = N, . . . , 1 , j = 1, . . . ,M (2.12)

(3) i = N, . . . , 1 , j =M, . . . , 1 (4) i = 1, . . . , N , j =M, . . . , 1 (2.13)

(where N and M are the number of nodes in each dimension) and it updates the value at
a grid point only if the new value is smaller than the current one. This idea can be easily
extended to the n-dimensional case.
Computing the values in this special ordering the algorithm is able to follow simultaneously
a family of characteristic in a certain direction. As proved in [100] the Fast Sweeping
method converges in 2n iterations where n is the dimension of the problem if the initial
front Ω0 is just a point on the grid and the function c is constant. If those assumptions
do not hold, the FS has been shown to be of complexity O(N) and to converge in a finite
number of iterations although the number of iterations is not explicitly written out. In
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[80] an extension on triangular meshes is given and it is proved that the upper bound to
the number of iterations needed by FS to reach convergence depends only on the quantity

DKλM
λm

where D is the diagonal of the domain Q and

f = 1/c , K = sup
x∈Q

∣∣∣∣
∇f(x)
f(x)

∣∣∣∣ , λM = sup
x∈Q

f(x) , λm = inf
x∈Q

f(x).

Let us note that the discretization used in [100] is the same used in the FM-FD method
described in section 2.1 and that in any case the numerical evidence shows that the
convergence is more rapid with respect to the classical iterative method.





Chapter 3

New Fast Marching methods

In this chapter we present a number of new results on Fast Marching (FM) methods
introduced in the previous chapter. In section 3.1 we give an exhaustive analysis of the
FM-FD method. An example which proves that the FM-FD scheme can produce imaginary
solutions is exhibited. Then, we give a complete proof of its convergence under a new CFL-
like condition which guarantees that the scheme is always meaningful and there are not
imaginary solutions. To our knowledge this condition appears for the first time in the
literature.
Section 3.2 is devoted to the presentation of a new Fast Marching semi-Lagrangian
method (FM-SL in the sequel) for the eikonal equation first appeared in [38]. Since semi-
Lagrangian schemes (SL in the sequel) introduced in Section 1.5.1 have shown to be more
accurate than the Finite Difference schemes corresponding to the same order, it is natural
to extend the ideas behind the FM-FD method to this class of schemes. Note that in
the framework of semi-Lagrangian schemes several convergence results and a-priori error
estimates have been obtained via control arguments (see Section 1.5). Moreover, these
schemes will not require an explicit and restrictive CFL condition for stability (see [52]).
In Section 3.2.2 convergence of FM-SL is proved. In the same section we analyze the
computational complexity showing that the FM-SL has a complexity of orderO(N ln(Nnb))
where N is the total number of nodes and Nnb is the number of nodes in the narrow band
(bounded by N). We also give the sweeping version of our method. Section 3.2.3 is
devoted to numerical tests and to the comparison between several schemes on a number
of benchmarks.
In Section 3.3 we extend the FM-SL method to non-convex Hamiltonians, in particular to
minmax Hamiltonians which appear in the analysis of differential games. Some numerical
tests show the potential of this new method presented in [39].
Finally, in Section 3.4 we present a second extension of the FM technique to non-monotone
evolution of fronts appeared for the first time in [25]. The new scheme covers the case
when the speed of propagation is time-dependent and it can change sign in space and/or
in time and can be successfully applied to the study of dislocation dynamics.

3.1 A new CFL-like condition for FM method

Let us observe that it is necessary to introduce some conditions or to modify the scheme
in order to avoid inconsistencies due to the appearance of imaginary solutions. In fact, let
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us consider the discretization (2.4) and suppose that

Ti,j < Ti+1,j Ti,j < Ti,j−1 Ti,j > Ti−1,j Ti,j > Ti,j+1.

It is easy to check that (2.4) corresponds to

(
Ti,j − Ti−1,j

∆x

)2

+

(
Ti,j+1 − Ti,j

∆x

)2

=
1

c2i,j
,

which gives

Ti,j =
Ti−1,j + Ti,j+1 ±

√
2
(
∆x
ci,j

)2
− (Ti−1,j − Ti,j+1)

2

2
. (3.1)

We already noted that the term under the square root can be negative. Obviously this
must avoided since complex roots have no physical meaning. A situation where this occurs
is the following example.
Consider the case where the initial front is the union of two points, i.e. Γ0 = P ∪ Q,
Q = (∆x,∆y) and P = (2∆x, 4∆y) (see Figure 3.1). Let us consider the following velocity

c(x, y) =





ε y ≤ ∆y
ε+ 1−ε

∆y (y −∆y) ∆y ≤ y ≤ 2∆y

1− 1−ε
∆y (y − 2∆y) 2∆y ≤ y ≤ 3∆y

ε y ≥ 3∆y

(3.2)

In this case the algorithm initialize the narrow band computing a large value for B when
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Figure 3.1: A configuration with complex roots

ε is small and a small value for the node A which will be the first node accepted (after
Γ0). When the node X have to be computed, its value depends on T (A) and T (B). Since
c(X) = 1 and T (A)− T (B) is large (for ε small) the radicand in (3.1) will be negative (as
numerical tests confirm).
This difficulty can be solved either choosing the positive part of the radicand (as suggested
in [63]) or changing discretization as in [100]. However, both choices lead to a modification
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of the scheme which can be difficult to handle when looking for theoretical results. We
prefer to avoid to change the scheme and we prove that under the CFL-like condition

∆x ≤ (
√
2− 1)

cmin
Lc

(3.3)

the algorithm computes always real solutions at every node (here cmin is the minimum
value of c and Lc is its Lipschitz constant). Condition (3.3) has a clear meaning and allows
to give a proof of convergence to the viscosity solution. At our knowledge this is the first
time this condition appears in the literature.

Let us denote by A the node in the narrow band where the minimum value of T is
attained.
The algorithm labels A as accepted and starts to compute the neighboring nodes which
are not accepted.

Proposition 3.1 Let X = (xi, yj) ∈ NFD(A) be the node where the FM-FD method
computes a solution. Let us assume that

cmin = min
Q\Ω0

c(x) > 0 (3.4)

and that the following CFL-like condition holds true

∆x ≤ (
√
2− 1)

cmin
Lc

(3.5)

where Lc denotes the Lipschitz constant of c. Then, we have

T (A) ≤ T (X) ≤ T (A) + fX (3.6)

where fX := ∆x/c(X).

The above result is crucial to have convergence in a finite number of steps. In fact, it
shows that the minimum value of the nodes in the narrow band (which is actually the
only value accepted at every iteration) is exact within the consistency error of the scheme.
An approximate value is considered to be exact if the algorithm can not replace it with a
strictly lower value at any of the following iterations.

Proof of Proposition 3.1. We will assume that B, C and D are the neighbors of X which
can have a label accepted, narrow band or far (see Fig. 3.2). We will prove the result by

Figure 3.2: The neighbouring nodes to X

induction on the number of iterations of the algorithm. We will always assume

T (B) ≤ T (D) (3.7)
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which is not restrictive since we can always switch the B and D.
In the first iteration we simply have

T (X) = 0 + fX

and (3.6) is satisfied. Let us consider the n-th step of the algorithm. The induction
hypothesis implies that at each iteration the values of nodes in the narrow band are greater
than values of nodes labeled as accepted at the same iteration. Therefore, by construction
we have that taken two nodes Y and Z

if Y has become accepted before Z then T (Y ) ≤ T (Z).

The proof will be divided into four cases:

CASE 1
B is far.
C and D are narrow band o far.
By assumption T (B) = +∞ and since T (B) ≤ T (D) this imply that D must be far.
Moreover, we have

T (C) ≥ T (A)

since A has been chosen among all the nodes of the narrow band to become accepted. Also
X must be far, since it has never been computed. Then by (2.4) we get

T (X) = T (A) + fX (3.8)

Since fX > 0, (3.8) implies

T (A) ≤ T (X) ≤ T (A) + fX .

CASE 2
B is narrow band.
C and D are narrow band or far.
Also in this case X is far. We have

T (A) ≤ T (B) , T (A) ≤ T (C)

since A is the minimal node in narrow band . Moreover, the assumption (3.7) implies that
T (X) will be computed by the values at A and B. From (2.4) we get

T (X) =
T (A) + T (B) +

√
2f2X − (T (A)− T (B))2

2
(3.9)

and then

T (X) ≥ T (A) + T (B)

2
≥ T (A) + T (A)

2
= T (A). (3.10)

Since T (X) solves
(T (X)− T (A))2 + (T (X)− T (B))2 = f2X

we have
(T (X)− T (A))2 ≤ f2X .
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Since all the terms in the above equation are positive we conclude that

T (X)− T (A) ≤ fX . (3.11)

CASE 3
B is accepted.
C and D are narrow band or far.
This situation occurs when X has been already computed once (when B has been labeled
as accepted). Let us denote its value by Told(X). The node X is then in the narrow band
and has to be recomputed because A has just been labeled as accepted. Let us note that
in the previous computation Told(X) has been computed according to the rules examined
in CASE 1 or CASE 2. Then we have

T (B) ≤ Told(X) ≤ T (B) + fX .

Moreover T (A) ≤ Told(X) because A just became accepted and T (B) ≤ T (A) since B
became accepted before A (induction).
These inequalities imply

T (B) ≤ T (A) ≤ Told(X) ≤ T (B) + fX (3.12)

and

0 ≤ T (A)− T (B) ≤ fX . (3.13)

The value at X, which will be denoted by Tnew(X), will depend on T (A) and T (B).
By (3.13) and (3.12) we derive

Tnew(X) =
T (A) + T (B) +

√
2f2X − (T (A)− T (B))2

2
≥ (3.14)

≥ T (A) + [T (B) + fX ]

2
≥ T (A) + T (A)

2
= T (A)

and

Tnew(X) ≤ T (A) + T (B) +
√
2fX

2
≤ T (A) +

√
2

2
fX ≤ T (A) + fX .

CASE 4
B is narrow band or far.
C accepted.
D is narrow band or far.
In this case X has already been computed because is a neighbor of C. It belongs to the
narrow band and has a value Told(X). Besides

T (A) ≤ Told(X) (3.15)

since on the contrary X would have been chosen instead of A as the node to be accepted
and

T (A) ≤ T (B) (3.16)
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for the same reason. Moreover we have T (C) ≤ T (A) by induction and T (B) ≤ T (D)
by assumption. In conclusion, the nodes contributing to the computation of T (X) are
C and B or only C. The fact that A has been labeled as accepted has no effect on the
computation so we are again in CASE 1 o 2. This implies,

T (C) ≤ Tnew(X) ≤ T (C) + fX ≤ T (A) + fX .

Now we prove that Tnew ≥ T (A). When Told(X) was computed the algorithm was in the
CASE 1, 2 so

T (C) ≤ Told(X) ≤ T (C) + fX (3.17)

Moreover we have
T (C) ≤ T (B) (3.18)

by induction.
If T (B) > Told(X) than the node contributing to the computation of T (X) is only C so
we have

Tnew(X) = T (C) + fX ≥ Told(X) ≥ T (A).

Otherwise, if T (B) ≤ Told(X) the nodes contributing to the computation of T (X) are C
and B.
Using this last assumption, (3.17) and (3.18) we have

T (C) ≤ T (B) ≤ Told(X) ≤ T (C)+fX ⇒ 0 ≤ T (B)−T (C) ≤ fX ⇒ (T (B)−T (C))2 ≤ f2X
(3.19)

Moreover, by (3.15) and (3.17) we have

T (C) + fX ≥ T (A). (3.20)

Computation of X leads to

Tnew(X) =
T (C) + T (B) +

√
2f2X − (T (C)− T (B))2

2
=

=
(T (C) + fX)− fX + T (B) +

√
2f2X − (T (C)− T (B))2

2
. (3.21)

Using (3.20), (3.19) and (3.16) we obtain

Tnew(X) ≥
T (A)− fX + T (B) +

√
2f2X − (T (C)− T (B))2

2
≥

≥
T (A)− fX + T (B) +

√
f2X

2
≥ T (A) + T (A)

2
= T (A). (3.22)

Finally, let us remark that the cases when two or more nodes among B, C and D are
accepted, can be treated as the previous cases. Note that if D is accepted, then B must
also be accepted since T (B) ≤ T (D).
To complete the proof, it is necessary to show that the expression appearing under the
square root in the computation of T (X) expressed as a function of its two neighbors is
nonnegative.
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Let us start proving that the hypothesis (3.5) guarantees that

c(Z)

c(Z ′)
≤
√
2 (3.23)

for any couple of nodes Z and Z ′ such that

|Z − Z ′| = ∆x.

In fact, by assumption we have

|c(Z)− c(Z ′)| ≤ Lc|Z − Z ′|.

If |Z − Z ′| = ∆x, we have that

|c(Z)− c(Z ′)| ≤ Lc∆x ≤ (
√
2− 1)cmin ≤ (

√
2− 1)c(Z ′)

which implies

c(Z)− c(Z ′) ≤ (
√
2− 1)c(Z ′)

and then

c(Z) ≤
√
2 c(Z ′).

Let us examine the three cases where we need to show that the radicand is nonnegative.

CASE 2
Since B is in the narrow band, there must be at least one neighbour belonging to accepted.
Let E be this node (see Figure 3.3 and 3.1). Moreover, T (A) ≤ T (B) since A has been

Figure 3.3: proof that radicand is positive under CFL condition (3.5)

chosen to be labeled as accepted and T (E) ≤ T (A) because E became accepted before A.
By the previous results, we get

T (E) ≤ T (B) ≤ T (E) + fB

which implies

T (A) ≤ T (B) ≤ T (E) + fB ≤ T (A) + fB

and

0 ≤ T (B)− T (A) ≤ fB. (3.24)
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Choosing Z = X and Z ′ = B in (3.23), we get

c(X)

c(B)
≤
√
2

and then √
2fX ≥ fB. (3.25)

Finally (3.24) and (3.25) imply

√
2fX ≥ T (B)− T (A) ≥ 0

so we can conclude that

2f2X − (T (B)− T (A))2 ≥ 0.

CASE 3 and 4
In these cases, (3.13) and (3.19) guarantee respectively that the expression appearing
under the radicand is always positive. ¥

Let us show now that the value at the node which is labeled as accepted at every iteration
is exact. Let us denote this value Tmin. Since all the nodes in the narrow band have
values greater than Tmin, the previous proposition implies that using those nodes we
cannot assign to a node a value lower than Tmin. In conclusion (see [85]), the up-winding
is respected and the value Tmin can be considered as exact since it cannot be improved on
the same grid (of course it can be improved if we reduce the discretization steps).

3.2 A semi-Lagrangian FM method

In this section we present our new Fast Marching semi-Lagrangian (FM-SL) scheme for
the eikonal equation appeared for the first time in [38].
The idea which is behind the FM-SL method is rather simple: we follow the initialization
and all the steps of the classical FM-FD method but the step where the value at the node
xi is actually computed. That step would require to iterate until convergence the scheme

vkh(xi) = min
a∈B(0,1)

{βvkh(xi − hc(xi)a)}+ 1− β, (3.26)

where β = e−h so that the typical fixed point iteration is applied ”locally” at every single
node following the order indicated by the FM-FD method. Note that we can replace a
with −a in (3.26) since we have a ∈ A = B(0, 1). We will prove that for a SL scheme based
on a piecewise linear space reconstruction just a single iteration is needed to compute the
exact (within the accuracy of the scheme) value at every node so that the computational
effort is very limited and of the same order of the FM-FD method.
At the end of the section we will also give a sweeping version of our algorithm.

To avoid cumbersome notations we will denote the fully-discrete value function vkh by
w.
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3.2.1 The FM-SL scheme

We will always approximate the function v = 1 − e−T instead of T and use the fact that
Kružkov transform is monotone. In fact, since T1 > T2 if and only if v1 > v2 we can work
on the v variable without changing the rules for the up-date of the narrow band because
the crucial point is to label as accepted the node in the narrow band where T (or v) attains
its minimum. The above rule guarantees that we will process the nodes in an ordering
which corresponds to increasing values of v.
Let us note that by means of the Kružkov transform one can also deal with the case when
c = 0 in some regions (obstacles) since in that case the minimum time function to the
target will have infinite value at some points whereas v will always stay bounded by 1.

Fast minimum search in B(0, 1)

We will start improving the minimum search which is typical of the SL-schemes. The
search for a minimum in the unit ball B(0, 1) will be solved algebraically for a linear
interpolation which allows to compute the values w(xi − hc(xi)a) using the known values
at the nodes. Clearly, a new algebraic solution must be obtained (if possible) for
other high order interpolations. Let us just recall that for the standard SL scheme
the search for the minimum is usually restricted to a discretization of the unit ball
B(0, 1) which takes into account r points (or controls in the minimum time terminology)
a1, a2, . . . , ak, . . . , ar ∈ B(0, 1).
For example, one can construct a uniform grid on ∂B(0, 1) with step ∆θ = 2π/r. To find
the minimum, for every ak the value w(xi−hc(xi)ak) is actually computed by interpolation.
Although the choice of the type and order of the interpolation is completely free the
most popular choices are linear, using the three values at the nodes which are closer to
xi − hc(xi)ak and bilinear, using the four values of w at the vertices of the cell containing
xi − hc(xi)ak.
Once all the values for ak, k = 1, . . . r are computed the minimum is obtained by
comparison. It is worth to note that this algorithm is quite slow and requires an high
computational cost, however it can be applied to every high order interpolation. Moreover,
it should be noted that this minimization problem is quite difficult since we expect to
have non differentiable or even discontinuous solutions (if state constraints/obstacles are
present in the domain) and that the comparison algorithm is very simple to implement
and reasonably fast in low dimension especially when the search for the minimum can be
restricted to the boundary of B(0, 1) (as it will be the case in many examples). However,
other algorithms for the minimization of non smooth functions can be applied and the
interested reader can find in [26] and [50] recent improvements on the solution of this
problem. These algorithms converge to the minimum in the limit so that they cannot be
applied here since we want to have an exact evaluation of the computational cost.
It is important to note that the time step h in (3.26) can vary at every node. We will
denote by hi = h(xi) the time step corresponding to the node xi, by ci = c(xi) the velocity
at xi and by βi = e−hi . When ci > 0 it is always possible to choose

hi =
∆x

ci
. (3.27)
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In this way (3.26) can be written as

w(xi) = min
a∈B(0,1)

{βiw(xi −∆x a)}+ 1− βi. (3.28)

In this situation, the nodes where ci = 0 are actually treated apart from the other nodes:
we just assign them the value w = 1 (which corresponds to T = +∞) without any
additional computation.

The method we propose here for the minimization problem has a low dimensional cost
since for linear interpolation the search is restricted to the boundary of the unit ball. This
is not a real restriction since, for our applications, the minimum in the unit ball is attained
at the boundary, see (1.30). Later in this section we will show how this algorithm can be
applied as a building block of our FM-SL scheme.
For simplicity, let us examine the situation in R

2 considering a set of four cells each of
side length ∆x centered at the origin (see Figure 3.4). We want to compute the minimum

Figure 3.4: search for optimal control

of the function w((0, 0)−∆x a) for a = (cos θ, sin θ) and θ ∈ [0, 2π). Let us introduce
a vector m = (m1,m2, . . . ,m8), the values of its components will be defined below. The
minimum value we search will be given by p = min{m1,m2, . . . ,m8}.
Let us define the first four components of m

m1 = w(∆x, 0) , m2 = w(0,∆x) , m3 = w(−∆x, 0) , m4 = w(0,−∆x)

and let us search for the minimum in every orthant.

I orthant
Let w1, w2 and w3 be the values of w corresponding respectively to the nodes (∆x, 0),
(∆x,∆x) e (0,∆x). The unique linear function f(x, y) satisfying the conditions

f(∆x, 0) = w1 , f(∆x,∆x) = w2 , f(0,∆x) = w3

is
f(x, y) = ax+ by + c (3.29)

where

a =

(
w2 − w3

∆x

)
, b =

(
w2 − w1

∆x

)
, c = w1 − w2 + w3.
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Let us define the real function

F (θ) = f(∆x cos θ,∆x sin θ) = a∆x cos θ + b∆x sin θ + c , θ ∈ [0, 2π) (3.30)

and look for the minimum of F (θ) in the interval (0, π/2). Note that the extreme values
θ = 0 and θ = π/2 are not included since the values at the extrema of that interval have
been already included in m (they are m1 and m2). By differentiating with respect to θ
we obtain

F ′(θ) = 0⇔ θ = arctan(b/a).

The interesting case is when w2 < w1 and w2 < w3, otherwise the minimum is w1 or w3.
In this case, we get

a 6= 0 , b 6= 0 , b/a > 0 , arctan(b/a) ∈ (0, π/2)

which means that the relative minimum is at θ∗1 = arctan(b/a) and we set m5 = F (θ∗1).
If w2 ≥ w1 or w2 ≥ w3 we set m5 = +∞ (or the highest machine number).

II orthant
Let w3, w4 and w5 be the values of w respectively at the nodes (0,∆x), (−∆x,∆x) e
(−∆x, 0). The unique linear function f(x, y) such that

f(0,∆x) = w3 , f(−∆x,∆x) = w4 , f(−∆x, 0) = w5

is
f(x, y) = ax+ by + c

where

a =

(
w3 − w4

∆x

)
, b =

(
w4 − w5

∆x

)
, c = w3 − w4 + w5.

Again we will consider the composite function F (θ) defined in (3.30), and we observe that
it has a relative minimum in (π/2, π) if and only if w4 < w3 and w4 < w5. In this case we
have

a 6= 0 , b 6= 0 , b/a < 0 , arctan(b/a) ∈ (−π/2, 0). (3.31)

Since we are in the second orthant the value of θ where the minimum for F is attained is
θ∗2 = arctan(b/a) + π. Proceeding as in the first orthant we set m6 = F (θ∗2).
If w4 ≥ w3 or w4 ≥ w5 we set m6 = +∞.

The analysis of the third and fourth orthant follows in the same way and it will be skipped.
Once all the components of m have been set, we just compute p = min{m1,m2, . . . ,m8}
and substitute it in the expression

w(0, 0) = βp+ 1− β. (3.32)

This is done at every fixed point iteration till convergence. It is important to note that the
above linear interpolation has a great advantage: the computation of the correct value of
w(0, 0) does not require more than one iteration given the values at the neighbouring nodes
(along the axis directions and the diagonals) since F (θ) will not depend on w(0, 0). This
property will not hold for other high-order interpolations, e.g. quadratic interpolation.
Another advantage of linear interpolation with respect to the comparison of the values
in a discrete unit ball is that it gives the exact value of the optimal direction at the cost
corresponding to a discretization of B(0, 1) by just 8 directions.
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The FM-SL algorithm

This section is devoted to the presentation of the fast marching version of the SL-algorithm,
for simplicity the presentation is given in R

2, the algorithm can be easily extended to R
n.

Let us start introducing the following definitions.

Definition 3.2 (Neighboring nodes for the SL scheme) Let X = (xi, yj) be a node
of the grid. We define

NFD(X) =
{
(xi, yj+1), (xi, yj−1), (xi−1, yj), (xi+1, yj)

}
,

D(X) =
{
(xi+1, yj+1), (xi+1, yj−1), (xi−1, yj+1), (xi−1, yj−1)

}
,

and
NSL(X) = NFD(X) ∪D(X).

The above definition is the natural extension of the Definition 2.1 for the semi-Lagrangian
scheme. According to the new definition, the nodes in the narrow band will include also
the diagonal directions and not only the four directions N, S, E, W as in the FM-FD
method of section 2.

Sketch of the FM-SL algorithm

Initialization (see Figure 3.5)

1. The nodes belonging to the initial front Γ0 are located and labeled as accepted. Their
value is set to w = 0. We will denote by Γ̃0 this set of nodes.

2. The initial narrow band is defined, according to the Definition 3.2, taking the nodes
belonging to NSL(Γ̃0) external to Γ0. These nodes are labeled as narrow band. Their

value is set to w = 1 − e−
∆x
c (which corresponds to T = ∆x/c) if they belong to

NFD(Γ̃0) or to w = 1− e−
√
2∆x
c (which corresponds to T =

√
2∆x/c) if they belong

to D(Γ̃0).

3. We label as far all the remaining nodes of the grid, their value is set to w = 1 (which
corresponds to the value T = +∞).

Main Cycle

1. Among all the nodes in the narrow band we search for the minimum value of w. Let
us denote this node by A.

2. The node A is labeled as accepted and it is removed from the narrow band.

3. We label as active the nodes in NSL(A) which are not accepted. If there are far
nodes, they are moved into the narrow band.

4. We compute (or recompute) the value w at the nodes belonging to NFD(A) which
are active, iterating the fixed point operator

w(xi) = min
a∈B(0,1)

{βiw(xi − hicia)}+ 1− βi , (3.33)
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Figure 3.5: Initialization for FM-SL method, case c > 0

where hici = ∆x. Note that just one iteration is needed as we will see in the following
sections. Then, we compute by the same formula the value at the remaining active
nodes in NSL(A) \NFD(A).

5. If the narrow band is empty the algorithm stops, else it goes back to Step 1.

Although the algorithm advances the narrow band also in the diagonal directions,
according to the new definition, it computes first the values at the neighbouring nodes
in the directions N, S, E, W (i.e. the FD directions) and then passes to the diagonal
directions.

Some extensions: obstacles, infinite velocity.
We have seen that one can use our algorithm to deal with a front propagation with
obstacles, i.e. regions where c vanishes. In [95] the problem has been analyzed and several
tests have been presented for a SL-method based on the linear interpolation which treats
the obstacle in a very simple way. The algorithm just assigns to the nodes belonging to
an obstacle the value w = 1 in order to impose (indirectly and easily) a state constraints
boundary conditions. In order to use the Fast Marching technique we just have to be
careful and distinguish between nodes initialized to the value w = 1 because they are far
and the ones to which was assigned the value w = 1 because they belong to an obstacle.
In section 3.2.3 (Test 5) we will show a front propagating in presence of obstacles.
Another interesting extension for applications to image processing is when the domain of
computation contains points with infinite velocity. This is the case, e.g. for the Shape-
from-Shading problem when we have point of maximal light intensity in the image (see
e.g. [81], [65] and Chapter 4). Let us illustrate the idea which is behind our solution. Let
xi0 be a node such that

lim
x→xi0

c(x) = +∞.

Our equation c(x)|∇T (x)| = 1 can be written as

|∇T (x)| = g(x) (3.34)

where g(x) = 1/c(x). Clearly, (3.34) is a degenerate eikonal equation since g vanishes at
xi0 (see Remark 1.7).
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In order to compute w(xi0), we can set, according to (3.27), hi0 = 0 and βi0 = 1 and
proceed as before setting in (3.33)

hi0ci0 = ∆x. (3.35)

Let us extend the function h(x) outside the nodes in the domain Q\Ω0. Our choice (3.35)
can be justified by the fact that we would expect in our algorithm

lim
x→xi0

c(x) = +∞ , lim
x→xi0

h(x) = 0 and lim
x→xi0

c(x)h(x) = ∆x.

Note that, even if this argument is heuristic, it assigns to the node xi0 the exact value for
w. In fact, by (3.33), we get

w(xi0) = min
a∈B(0,1)

{1 · w(xi0 −∆x a)}+ 1− 1 = w(xi0 −∆xa∗)

where a∗ is the optimal control. Since the front has an infinite velocity at xi0 the minimum
time of arrival on it coincides with the minimum time of arrival on the circle of radius
∆x centered at xi0 . In section 3.2.3 (Test 6 and 7) we will show an application to a front
propagation problem and to the Shape-from-Shading problem.

Properties of the FM-SL scheme

We start with the following easy result on the semi-Lagrangian discretization.

Proposition 3.3 Let X be a node and assume that w(X), defined by (3.33), is computed
by interpolation using the three values w(1), w(2), w(3). Then,

w(X) ≥ min
{
w(1), w(2), w(3)

}
. (3.36)

Proof . Let β = e−h, h > 0 and a∗ be the optimal direction/control at X. The inequality

βw(X − hicia∗) + 1− β ≥ w(X − hicia∗)

is satisfied if and only if w(X − hicia
∗) ≤ 1. Since w is always less or equal to 1 (due to

the Kružkov transform) we proved that

w(X) ≥ w(X − hicia∗). (3.37)

Since a simple property of linear interpolation guarantees that

max
{
w(1), w(2), w(3)

}
≥ w(X − hicia∗) ≥ min

{
w(1), w(2), w(3)

}
(3.38)

by (3.37) and (3.38) we end the proof. ¥

In order to prove that the Fast Marching version of our SL-scheme converges to the
viscosity solution in a finite number of steps we have to prove first that the fast method
for the minimum analyzed in section 3.2.1 matches with the Fast Marching technique. This
is necessary since the narrow band of FM-SL method is larger than the narrow band of
FM-FD method as a consequence of the new definition of neighboring nodes. In particular
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we will show that the algorithm automatically reject far nodes from the computation as
in the standard up-wind finite difference discretization.
Let X be the node where we want to compute w(X). Without loss of generality, we will
assume that the optimal value is attained at a direction θ∗ ∈ [0, π/2], i.e.

a∗ = (cos θ, sin θ) , θ ∈ [0, π/2]. (3.39)

We will examine in detail all the possible configurations for this situation which will be
referred to in the sequel as the ”minimum in I orthant” case (see Figure 3.6). For simplicity,
let us assume c > 0 so that a node is labeled as far if and only if its value is w = 1.

Proposition 3.4 Let X be a node and let w(X) be defined by (3.33). The value w(X)
will not be computed by interpolation using nodes labeled as far.

Proof . Let us give the proof for minimum in the I orthant. The analysis for the other
orthants is similar and can be easily obtained by symmetry arguments.

Figure 3.6: Analysis of the minimum in the I orthant

1. w1 = w2 = w3 = 1.
This configuration can not occur. In fact, since the minimum is attained in the I
orthant we should have

w4 = w5 = w6 = w7 = w8 = 1.

But this is not possible since we compute at X only when at least one of the nodes
belonging to NSL(X) has been labeled to accepted in one of the previous iterations
and an accepted node must have a value lower than 1.

2. Among w1, w2 and w3 there are two values equal to 1.

(a) w1 = w3 = 1 : this case can not occur. In fact, since the minimum is attained
in the I orthant we must have w2 ≤ w1, w3, w4, . . . , w8. The node that must
be labeled as accepted is the one corresponding to the value w2. This implies
that the values w1 and w3 must be computed before X (see the sketch of the
algorithm).
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(b) w1 = w2 = 1 : the minimum value is w3. A new iteration to compute w(X)
would not give a lower value, so the optimal value is obtained in just one
iteration.

(c) w2 = w3 = 1 : the minimum value is w1. Again, we will not get a lower value
iterating and the optimal value is obtained in just one iteration.

3. Among w1, w2 and w3 only one value is equal to 1

(a) w2 = 1 : since f is linear the minimum will be attained by w1 or w3. The
optimal value is obtained in just one iteration.

(b) w1 = 1 , w3 ≤ w2 : the minimum is w3.

(c) w1 = 1 , w3 > w2 : this is the most delicate case since w2 < w1, w3. The
minimum for F will be attained at some θ∗ ∈ (0, π/2). The value w(X),
obtained by linear interpolation will not be correct since it depends on w1 = 1,
which is a conventional value. Moreover, note that a new iteration of the fixed
point map at X will not make w(X) decrease since w1 is frozen and so does
w(X). If this case could occur we will not get convergence to the correct value
even in the limit on the number of iterations. Note that this difficulty can not
occur neither for the global SL scheme where all the nodes are computed at the
same iteration nor for the FM-FD method where the values corresponding to
far nodes are not used in the stencil. The following argument shows that this
case can not occur also for the FM-SL scheme. Since w1 = 1, the corresponding
node is labeled as far at the current iteration. This implies the nodes labeled as
accepted at the previous iteration do not belong to NSL(w1). As a consequence,
w2 belongs to the narrow band. By Proposition 3.3 we have w(X) > w2. This
implies that X can not be labeled as accepted before the nodes corresponding
to w2. Once w2 becomes accepted the algorithm computes w1 and w3 before
computing w(X) so that the values at nodes labeled as far will not contribute.

(d) w3 = 1 , w1 ≤ w2 : the minimum is w1. The optimal value is obtained in just
one iteration.

(e) w3 = 1 , w1 > w2 : analogous to case (3c).

¥

3.2.2 Convergence of FM-SL

As for the FM-FD method we have to prove that the minimal value of the nodes of the
narrow band can not decrease if we iterate the fixed point operator, i.e. it coincides
with the value obtained by the discrete operator working on all the nodes. As we have
seen, the values at the nodes belonging to the narrow band are not accepted all together.
Only the minimal value is accepted at every iteration (this is a very pessimistic choice
which simplifies the theoretical result). The following proposition shows the bounds on
the number of times that one node can be recomputed and it is a building block for the
convergence of the scheme.
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Proposition 3.5 Let X be a node in the narrow band such that w(X) = wold(X). Let us
assume that at the current iteration the algorithm needs to compute a new value wnew(X)
for X. Moreover, let us assume that at the current iteration the following property holds
true:

If A belongs to the narrow band and B is labeled as accepted , then w(A) ≥ w(B)
(3.40)

The following properties hold:

1. If the value wold(X) was computed at an iteration in which a grid point A1 ∈ NFD(X)
was labeled as accepted then it is impossible that wnew(X) < wold(X).

2. If the value wold(X) was computed at an iteration in which a grid point A2 ∈ D(X)
was labeled as accepted then to the node X it can be assigned a new value wnew(X) <
wold(X) but it will always satisfy the inequality wnew(X) ≥ w(A2).

Proof . Let us start from the first statement.

1. Let us assume that when the value wold was assigned to X the node A1 has been
the (unique) node belonging to NFD(X) which has been labeled as accepted. When
the algorithm computed w(X) = wold(X) we certainly had

min
a∈∂B(0,1)

w(X −∆x a) = w∗ ≤ w(A1)

since there is a direction/control ā ∈
{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
such that

w(X − ∆x ā) = w(A1). The only possibility to have at X a value lower than
wold(X) in the following iterations of the algorithm is that a value assigned to a
node belonging to NSL(X) be lower than w∗. However, by Proposition 3.3 we know
that this value can not be computed using in the stencil the values at the nodes of
the actual narrow band because they are all greater than w(A1) ≥ w∗ which has
been accepted (as (3.40) assures). A lower value could be computed only using a
stencil which contains nodes already accepted in one of the previous iterations since
they all have values lower than w(A1). This is not possible since all the nodes which
are neighbors of those accepted nodes have been already computed and they have a
value greater or equal to w(A1) since they have not been labeled as accepted.

2. Let us assume, for simplicity, that the node A2 is the unique node belonging to D(X)
which has been labeled as accepted and let wold(X) be the value assigned at X at
the same iteration. When a node A1 ∈ NFD(X) has been labeled as accepted before
A2, the result holds true by the arguments of the above Case 1.
Let us assume that A2 be the unique neighbor of X which has been labeled as
accepted. Then we have

min
a∈∂B(0,1)

w(X −∆x a) = w∗ ≥ w(A2)

It is always possible that using w(A2) one can obtain a new value wnew(X) lower
than wold(X). However, by (3.40) and Proposition 3.3 all the new values will be
greater or equal to w(A2) therefore wnew(X) ≥ w(A2). ¥
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Remark 3.6 Note that the previous proposition allows to accelerate the algorithm. In
fact, one can save CPU time avoiding to recompute the values at the nodes corresponding to
Case 1. However, they can not be labeled as accepted before their value is the minimum in
the narrow band. An important consequence of Proposition 3.5 and the above observation
is that every node can be computed at most 5 times, this is one of the reasons why the CPU
time for FM-SL is slightly larger than that for the FM-FD method where a node can be
computed at most 4 times. We will see in the last section that the FM-SL method produces
a more accurate approximation of the viscosity solution which justifies a small increment
in the CPU time.

The following result is an analogue of Proposition 3.1 and it is crucial to prove convergence
in a finite number of steps.

Proposition 3.7 Let w be defined in (3.33) and let w(X) be the value assigned at X at
the same iteration when a node Z ∈ NSL(X) is labeled as accepted. Assume that

c(x) ≥ 0 , for any x ∈ Q\Ω0.

Then, we have
w(X) ≥ w(Z). (3.41)

Proof . We examine all the cases corresponding to a minimum in the I orthant (see Figure
3.6). The proof will be obtained by induction on the number of iterations of the algorithm.
At the first step the result holds true by our initialization.
Let us consider the n-th step of the algorithm. The induction hypothesis implies that at
the current iteration the values of nodes in the narrow band are greater than values of
nodes labeled as accepted. Therefore (3.40) holds true so we can apply Proposition 3.5.
Our proof will be divided into three parts.

CASE 1 : w1, . . . , w8 are narrow band or far (before Z is labeled as accepted).
If Z belongs to the I orthant we have seen by Proposition 3.3 that

w(X) ≥ min
{
w1, w2, w3

}
= w(Z).

If Z does not belong to the I orthant we have

w(X) ≥ min
{
w1, w2, w3

}
≥ w(Z)

since Z as been labeled as accepted.

CASE 2 : one node w1, . . . , w8 is accepted (before Z is labeled as accepted).
Let us denote by P this node. When P was accepted the value at X was wold(X). Now
the value at X has to be recomputed. We can only have one of the following situations:

1. P belongs to the I orthant.

(a) Z belongs to the I orthant

i. See Figure 3.7-(a). By Proposition 3.5 Z and B cannot be assigned
to a lower value after P became accepted, so wnew(X) = wold(X) and
wold(X) ≥ w(Z) since Z is the node chosen to be labeled as accepted.
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Figure 3.7: Four different configurations for CASE 2.

ii. See Figure 3.7-(b). When Z is accepted the minimum is attained at P and
this implies again wnew(X) = wold(X).

(b) Z does not belong to the I orthant

i. See Figure 3.7-(c). In the iterations between the acceptation of P and
that of Z the values w(A) and w(B) can not be changed. Moreover, the
minimum is attained in the I orthant so we have wnew(X) = wold(X).

ii. See Figure 3.7-(d). We know that the value w(A) has not been replaced,
w(B) can not be lower than w(P ) and that the minimum is attained in the
I orthant. Then, the minimum is attained at P and wnew(X) = wold(X).

2. P does not belong to the I orthant.
Since the minimum is attained in the I orthant this means that P does not have
effect on the computation at X and we are back to CASE 1.

CASE 3: more than one value among w1, . . . , w8 has been labeled as accepted (before Z
is labeled as accepted).
This case can be solved by the arguments in CASE 2. ¥

As for the FM-FD method (see [85]) we can now conclude that the value of the node
which is labeled as accepted at every iteration can not be decreased if we iterate the fixed
point operator. In fact, let us denote this value wmin. Since all the nodes in the narrow
band have values greater than wmin, the previous result implies that using those nodes
we cannot assign to a node a value lower than wmin. In conclusion, the up-winding is
respected and the value wmin can be considered exact since it cannot be improved on the
same grid (of course it can be improved if we reduce the discretization steps).
It is interesting to note that the FM-SL scheme does not require a stability CFL type
condition as required by the FM-FD scheme.

The SL scheme is consistent as it has been proved, e.g. in [52]. Moreover, choosing
∆x = ∆y we get that local truncation error is O(∆x).
We will prove that the solution computed by the FM-SL method is identical to the solution
computed by the standard semi-Lagrangian scheme where the computation is repeated on
every node of the grid until convergence. Naturally, if the two schemes compute the same
values, convergence of the FM-SL method to the viscosity solution is just a consequence
of that of the standard SL scheme.
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Theorem 3.8 Let (Vi)i=1,...,M be the matrix containing the final values on the n-
dimensional grid and let

Vi = F (Vi−k, . . . , Vi+l) (3.42)

be the iteration corresponding to the numerical scheme. Let V̂ be the matrix of the
approximate solution corresponding to the fixed point iteration (3.42) and let V the matrix
containing the final values of the approximate solution corresponding to the FM technique
applied to the same scheme ( i.e. the result obtained when the narrow band is empty).
Then, V = V̂ .

Proof . The two matrices coincide if and only if

V i = F (V i−k, . . . , V i+l) , for any i = 1, . . . ,M. (3.43)

Assume the narrow band is empty and take V as initial guess for the fixed point technique,
this will not change the solution since the value is computed by the same scheme. When
all the nodes are accepted the equality (3.43) must hold for every i. In fact, if the equality
is not true at one node than its value can still be improved and this implies that the list
of narrow band or far nodes is not empty, which gives the contradiction. ¥

The above results allow us to draw some conclusions about the order of complexity of
the FM-SL scheme. The values w(X) computed by (3.33) is an approximation of v(X)
which has been computed in at most 5 times for every nodes. This means that the
computational cost can be estimated as in FM-FD scheme. One component is given by
the cost of the heap-sort method to select the minimum value in the narrow band , the
other component is given by the computational cost at every node. This globally gives a
cost O(N log(Nnb)), where N is the total number of nodes and Nnb the number of nodes
in the narrow band.
Since the values which have been labeled as accepted at every iteration can not be improved
by the global fixed point iteration, i.e. they coincide with the same values obtained by
the global fixed point operator, the a-priori error estimates are still valid for the solution
obtained by the FM-SL method. In the last section we will present several tests which
confirm these theoretical results.

Boundary conditions on ∂Q

We define outside Q a strip of ghost nodes where we set w = 1. If they enter in the narrow
band, at the end of the iteration their value is set back to w = 1 to avoid their contribution
to the computation of other internal nodes. When the minimal value on the nodes of the
narrow band is 1, the ghost cells will be the only non accepted nodes and we can stop the
computation. In general, any constant larger than the maximum of the solution in Q can
be used to assign the value at the ghost nodes (a typical choice is to set the solution to
+∞ if there is no a-priori estimate on the solution).

A semi-Lagrangian Fast Sweeping methods

The Fast Sweeping method introduced in Section 2.4 has an easy extension to the semi-
Lagrangian case. In fact, we can easily substitute the FD discretization by the SL
discretization maintaining the ordering in which nodes are visited. Obviously, we expect
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that at least in the case c(x) ≡ constant the Fast Sweeping semi-Lagrangian (FS-SL in
the sequel) can compute in four iterations exactly the same solution of FM- SL. In the
next section we run this algorithm in the case c(x) ≡ 1 with two different initial fronts
and we will see that this intuition is actually true.

3.2.3 Numerical experiments

In this section we present some numerical experiments performed with Matlab 7 on a
Personal Computer equipped with Pentium IV 2.80 GHz processor, 512 MB RAM.
The main goal is to compare the FM-FD method and the FM-SL method. We also compare
these methods with the iterative semi-Lagrangian method and Fast Sweeping method
based on a semi-Lagrangian discretization. First two tests are devoted to approximate
the solution of model problems where we know the exact solution, so we can compute
the L∞ error and L1 error. Other tests are devoted to solve more complicated problems
and applications in which the velocity function c(x) does not satisfy standard assumptions
such as Lipschitz continuity and boundedness.
If not specified otherwise, we choose Q = [−2, 2]2 as our computational domain.

Tests on model problems

In the following tests we compare the exact solution T with the solution T̂ computed by
FM-FD method and FM-SL method described above. Note that in the implementation
of the FM-SL algorithm we have used the observation in Remark 3.6 to speed up the
computation.
We compute

E∞,∆x = max
i,j
|Ti,j − T̂i,j | , E1,∆x = (∆x)2

∑

i,j

|Ti,j − T̂i,j | (3.44)

and the rate of convergence r in some model problems in R
2. We consider 51×51, 101×101

and 201× 201 grids1 corresponding respectively to ∆x = 0.08, ∆x = 0.04 and ∆x = 0.02.
Since we know that there is a constant C such that

Ep,∆x ≤ C∆xr and Ep,∆x/2 ≤ C

(
∆x

2

)r
, p = 1,∞

we obtain that the numerical rate of convergence is

r = log2

(
Ep,∆x
Ep,∆x/2

)
, p = 1,∞.

Moreover, we compare these algorithms with the classical iterative semi-Lagrangian

method (SL) in which we chose maxi,j |w(k)
i,j − w

(k−1)
i,j | < ε, ε = 10−7 as stopping criterion

and with the Fast Sweeping method based on a semi-Lagrangian discretization (FS-SL)
performing just four iterations in different order.
Let us finally remark that in all cases the condition (3.5) holds.

1In these grids there is a node corresponding to the point (0, 0)
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Test 1

Γ0 = (0, 0) , c(x, y) ≡ 1

Exact solution:

T (x, y) =
√

(x2 + y2)

grid= 51x51  FM−SL
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Figure 3.8: level sets of T (x) computed by FM-SL method, 51× 51 grid

method ∆x L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0875 0.7807 0.5

FM-SL 0.08 0.0329 0.3757 0.7

SL (46 it) 0.08 0.0329 0.3757 8.4

FS-SL 0.08 0.0329 0.3757 0.8

FM-FD 0.04 0.0526 0.4762 2.1

FM-SL 0.04 0.0204 0.2340 3.1

SL (86 it) 0.04 0.0204 0.2340 60

FS-SL 0.04 0.0204 0.2340 3.2

FM-FD 0.02 0.0309 0.2834 9.4

FM-SL 0.02 0.0122 0.1406 14

SL (162 it) 0.02 0.0122 0.1406 443.7

FS-SL 0.02 0.0122 0.1406 12.5

Table 3.1: errors for Test 1

method L∞ (0.08→ 0.04) L∞ (0.04→ 0.02) L1 (0.08→ 0.04) L1 (0.04→ 0.02)

FM-FD 0.7342 0.7675 0.7132 0.7487

FM-SL 0.6895 0.7417 0.6831 0.7349

Table 3.2: rate of convergence in L∞ and L1 computed by errors in Table 3.1

Results are summarized in Table 3.1. As expected, in all cases errors reduce as ∆x
decreases. The numerical rate of convergence (Table 3.2) is in the interval [0.5, 1] for both
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methods.
FM-SL method and SL give exactly the same errors in accordance with Theorem 3.8
and they are also equal to the errors of FS-SL as expected since FS-SL converges in four
iterations in the case c is constant. These errors are about the half of the FM-FD method
errors although both are first order methods. This is due to the fact that semi-Lagrangian
discretization is able to follow every direction of the characteristic flow.
Both methods based on Fast Marching technique are dramatically faster then iterative
method SL. Nevertheless we want to note that only one iteration of the iterative scheme
is less expensive with respect to the single iteration needed by Fast Marching based
algorithms. This is due to the fact that the narrow band technique requires 1) to compute
a minimum over nodes in the narrow band and 2) to access the data in an almost random
manner rather than a systematic way along the loop indices (see [63]). Finally we note
that CPU time needed by FM-SL method is slightly larger than CPU time needed by FM-
FD method. This due to the fact that 1) the narrow band is bigger in the first method
therefore the search for the minimum in the narrow band is more expensive and 2) in
FM-SL method we need to compute the minimum over the unit ball B(0, 1).

Test 2

Γ0 = unit square centered in (−1, 1) and rotated by 11.25◦ ∪
circle with radius R = 0.5 centered in (0,−1) ∪

square with side 0.4 centered in (1.4, 1.4)

c(x, y) ≡ 1

Exact solution: T (x, y) = minimum between the distance function of the square rotated,
the circle and the square.
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Figure 3.9: level sets of T (x) computed by FM-SL method, 101× 101 grid

Results are summarized in Table 3.3. In this test the shape of the initial front is much more
complicate but errors have the same behavior as in the previous simple Test 1, although
the difference between errors is smaller.
The FS-SL seems to be the best method. It has the smallest error and the CPU time is
slightly larger than that of FM-FD. This is probably due to the fact that the structure of
the narrow band is very complicate and it is very large in terms of nodes.
Also in this case the rate of convergence (Table 3.4) is grater than 0.5.
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method ∆x L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0625 0.2154 0.5

FM-SL 0.08 0.0440 0.1849 0.7

SL (30 it) 0.08 0.0440 0.1849 4.9

FS-SL 0.08 0.0440 0.1849 0.7

FM-FD 0.04 0.0393 0.1120 2.2

FM-SL 0.04 0.0215 0.1044 3.1

SL (55 it) 0.04 0.0215 0.1044 34.1

FS-SL 0.04 0.0215 0.1044 2.9

FM-FD 0.02 0.0248 0.0669 10.2

FM-SL 0.02 0.0135 0.0633 14.5

SL (102 it) 0.02 0.0135 0.0633 246.6

FS-SL 0.02 0.0135 0.0633 11.4

Table 3.3: errors for Test 2

method L∞ (0.08→ 0.04) L∞ (0.04→ 0.02) L1 (0.08→ 0.04) L1 (0.04→ 0.02)

FM-FD 0.6693 0.6642 0.9435 0.7434

FM-SL 1.0332 0.6714 0.8246 0.7218

Table 3.4: rate of convergence in L∞ and L1 computed by errors in Table 3.3

Applications

In the following we try to use FM-SL method in some classical applications of the eikonal
equation like the minimum time problem and Shape-from-Shading. We consider some
cases not covered by the theory in which c(x, y) is discontinuous, c(x, y) vanishes in some
regions (state constraints) and c(x, y) has infinite values. We also consider the anisotropic
case in which the velocity field c depends on (x, y) and on the control a. The results we
obtained are very satisfactory even in these cases.

Test 3: non-constant velocity.

Γ0 = ∂B(0, ε) , ε = ∆x/2

c(x, y) = |x+ y|

In this case the velocity field is non-constant. Figure 3.10 shows the value function T (x, y)
and level sets of T . On the line x = −y the solution T is not defined since its correct value
is T = +∞.
The FS-SL method needs 12 iterations to reach convergence and it is more than three
times slower than FM-SL method.
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Figure 3.10: value function T (left) and level sets of T (right)

Test 4: discontinuous vector field.

Γ0 = (−1, 0).

c(x, y) =

{
0.4 (x, y) ∈ [0.5, 1]× [0, 0.5]
1 elsewhere

In this case the velocity field is discontinuous. Figure 3.11 shows the value function
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Figure 3.11: value function T (left) and level sets of T with some optimal trajectories
(right)

T (x, y) and level sets of T . Figure 3.11-right also shows some optimal trajectories which
start from four different points and reach the target Γ0 in the minimum time with speed
c(x, y). The FS-SL method converges in 8 iterations.

Test 5: state constraint problem.

Γ0 = (−1,−1).

c(x, y) =

{
0 (x, y) ∈ ([0, 0.5]× [−2, 1.5]) ∪ ([1, 1.5]× [−1.5, 2])
1 elsewhere

In this test the velocity field vanishes in two different regions (the obstacles). Figure
3.12 shows the computational domain, the value function T (x, y) and level sets of T .
Figure 3.12-right also shows one optimal trajectory which starts from the point (1.8, 1.5)
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Figure 3.12: domain of the equation (left), value function T (center) and level sets of T
with one optimal trajectory (right)

and reaches Γ0 in the minimum time avoiding obstacles. We remark that since we use
Kružkov transform and compute v, we do not need to modify the numerical scheme to
deal with state constraints. Also in this case the FS-SL method converges in 8 iterations.

Test 6: infinite velocity.

Γ0 = (−1, 0).

c(x, y) =

{
+∞ x ≥ 1
1 elsewhere
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Figure 3.13: domain of the equation (left) and value function T (right)

In this case the front can propagate instantaneously in the region R = {x ≥ 1}. It
corresponds to the case of the following degenerate eikonal equation (see Remark 1.7)

|∇T | = f(x, y) with f = 0 in R.

Figure 3.13 shows the computational domain and value function T (x, y). In this test we
used the technique described in section 3.2.1 in order to deal with this kind of vector field.
This technique allows to reconstruct a perfect flat surface on R as the theory and the
physical sense require. This technique can be very useful in Shape-from-Shading problems.
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Test 7: Shape-from-Shading.

Q = [−1, 1]2 , Γ0 = silhouette of a vase

c(x, y) =

(√
1

I2
− 1

)−1

, I(x, y) = intensity light function

In this test we solve the Shape-from-Shading problem in the simple case of a vase. Figure

Figure 3.14: initial image (left) and reconstructed surface (right)

3.14-left shows the initial image and Figure 3.14-right shows the reconstructed surface.
By the symmetry of the problem we guess that all characteristic curves start from the
right and left side of the image, so we can impose Dirichlet boundary condition just on
the right and left side of the domain and state constraints elsewhere (see Chapter 4 for
some considerations about boundary conditions in Shape-from-Shading problem.

Test 8: Poincaré model.

Q = [−1, 1]2 , Γ0 = (−0.65,−0.65).

c(x, y) =

{
1− (x2 + y2) , x2 + y2 < 1
0 elsewhere

This example is an interesting application of the eikonal equation to the Poincaré model of
the hyperbolic geometry. Figure 3.15 shows the computational domain, the value function
T (x, y) and level sets of T . The FS-SL method converges in 8 iterations.
As result of the particular choice of the velocity field (see [69]), the optimal trajectories
of the associated minimum time problem correspond to the hyperbolic straight lines.
Moreover, the level sets of T are hyperbolic circles with center Γ0 (i.e. the sets of points
which have the same hyperbolic distance from Γ0).

Test 9: geodesics on a nonsmooth surface.

Q = [−1.5, 1.5]2 , Γ0 = (0,−0.6).

Surface : z(x, y) =

{
1− (|x|+ |y|) , |x|+ |y| < 1
0 elsewhere
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Figure 3.15: domain of the equation (left), value function T (center) and level sets of T
with some optimal trajectories (right)

c̃(x, y) ≡ 1 (on the surface)

In this case we want to solve a minimum time problem on a surface z = z(x, y). The 3D
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Figure 3.16: level sets of T (left) and an optimal trajectory on the surface z (right)

problem can be easily reduced to a 2D problem modifying the velocity field in according
to the function z. In fact, if the intrinsic velocity on the surface in equal to 1, it can be
shown (see [84, 64]) that the velocity of the corresponding 2D problem becomes

c(x, y, a) =
1√

1 + (∇z · a)2
.

Figure 3.16 shows the level sets of T and the surface with an optimal trajectory on it. The
starting point is (0, 0.5).
We remark that the dependence of c on a changes the properties of the solution of the
equation. In fact the equation for anisotropic front propagation is

{
v(x) + max

a∈B(0,1)
{c(x, a)a · ∇v(x)} = 1 x ∈ R

n\Ω0

v(x) = 0 x ∈ ∂Ω0

(3.45)

In this case Fast Marching technique is no more directly applicable (there is no guarantee
that convergence is reached in just one iteration, see Section 2.2). This is true for FM-
SL method too, but we stress out that scheme (3.33) requires tiny modifications to deal
with this kind of velocity field. Moreover, if we use the function w computed by FM-SL
method as starting point of the iterative scheme SL, we can reach convergence in very few
iterations.
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3.3 A FM method for Pursuit-Evasion games without state

constraints

In this section we present a generalization of the semi-Lagrangian Fast Marching method
to Pursuit-Evasion games (see Section 1.4.1 for the definition of the problem). This work
is appeared in [39]. We point out that this is the first time the FM technique is extended
to non-convex Hamiltonians, in particular to minmax Hamiltonians which appear in the
analysis of differential games. We will discuss the main ideas which are behind this new
algorithm also showing some numerical results on classical problems.

3.3.1 The FM-SL scheme for Pursuit-Evasion games

Let us consider the Isaacs equation for the lower value of a differential game
{
v(x) + min

b∈B
max
a∈A

{
−∇v(x) · f(x, a, b)

}
= 1 x ∈ R

n\T
v(x) = 0 x ∈ ∂T

(HJI)

where f is the dynamics for the game, A and B are two compact sets in R
m representing

respectively the control set for the first player (Pursuer) and the second player (Evader)
and T is a closed set with non empty interior representing the target for the game. The
fully-discrete scheme based on the Discrete Dynamic Programming Principle is (see 1.5.2)

{
w(xi) = max

b∈B
min
a∈A

{
e−hw(xi + hf(xi, a, b))

}
+ 1− e−h xi ∈ Iin

w(xi) = 0 xi ∈ IT
(3.46)

where we denoted by w the fully-discrete value function vkh. It is well known that at every
node xi we need to compute the value w(xi + hf(xi, a, b)) for all a ∈ A and b ∈ B by
interpolation using the values of the neighboring nodes. For a reconstruction based on
linear interpolation in R

2, we will write

w(xi + hf(xi, a, b)) = I(w(xi,1), w(xi,2), w(xi,3))

where I is the interpolation operator and the values xi,k, k = 1, 2, 3 correspond to the
vertexes of the triangle containing xi + hf(xi, a, b). Obviously the choice of the nodes
xi,1, xi,2, xi,3 to be used in the interpolation depends on a and b via the dynamics f . We
will denote by x∗i,1, x

∗
i,2, x

∗
i,3 the triple corresponding to the optimal controls a∗ and b∗ (see

Fig. 3.17). Now we can introduce the following important

Definition 3.9 We define the reachable set at iteration n as the set

Rn = {xi ∈ G : x∗i,1, x
∗
i,2, x

∗
i,3 are narrow band or accepted nodes}.

The above definition means that if the state of the system is in Rn then player P (ursuer)
can drive the dynamics in the computed zone (that is he wins) whatever player E(vader)
does. This allows, in some sense, to get rid of the second player E so that the problem
is reduced to a 1-player game. Now let us give a brief sketch of the algorithm (see the
FM-SL algorithm for details).

Algorithm
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Figure 3.17: the triple x∗i,1, x
∗
i,2, x

∗
i,3

1. The nodes belonging to the target T are located and labeled as accepted setting
their values to w = 0. All other nodes are set to w = 1 and labeled as far.

2. The initial narrow band is defined as all the neighbors of the accepted nodes. Their
value is ”valid” only if they are in the reachable set.

3. The node in the narrow band with the minimal ”valid” value is labeled as accepted
and it is removed from the narrow band.

4. Neighbors not accepted of the last accepted node are computed and inserted in the
narrow band. Their value is ”valid” only if they are in the reachable set.

5. If the narrow band is not empty go to Step 3, else stop.

It should be noted that the algorithm can stop even if some nodes are not yet accepted.

Theorem 3.10 Let f(x, a, b) be a dynamics for a game and assume that

f̂(x, a) := f(x, a(b∗), b∗)

is a dynamics for which the 1-player FM-SL converges. Then, the FM-SL algorithm for
differential games described above computes an approximate solution of (HJI).

Proof .
Let us consider the last accepted value wmin at the n-th iteration. We have to prove that
this value is optimal for both players P and E. If the value wmin was assigned to the node
xi, it means that there exists at least a trajectory which drives the dynamics from xi to
the target in time T̂ = − ln(1−wmin), that is P can win in a time T ≤ T̂ even if E plays
optimally. Therefore any value w > wmin can not be optimal for P . On the other hand,
it is impossible to get a value w lower than wmin at the same node xi. This result follows
by the proof of the FM-SL method. ¥

Although it is hard to check if the assumptions of the Theorem 3.10 hold true, it makes
a ”bridge” between 1-player and 2-player games. Once we can count on a generalized
Fast Marching method which can deal with general Hamiltonians, Theorem 3.10 gives a
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criterion to its applicability to the solution of differential games.

In the following we will only deal with unconstrained Tag-Chase game in reduced
coordinates introduced in section 1.4.1. We assume that the two players P and E run
in a infinite plane. The discrete problem will be set in a domain Q ⊂ R

2 discretized by a
uniform structured grid and we denote the space step by ∆x.

Choice of discretization step h

The choice of discretization step h is fundamental to achieve the convergence of the
numerical scheme. Unfortunately, we noted that the 2-player case is more complicated
with respect to the 1-player case. Let us consider the dynamics f(x, a) = c(x)a for the
1-player case. If A = ∂B(0, 1) we have |f(xi, a)| = c(xi) for every a, i.e. |f | is constant
with respect to the choice of control. On the contrary, if we consider the dynamics for
reduced Tag-Chase game f(x, a, b) = VPa − VEb and we choose A = B = ∂B(0, 1) then
|f | is no longer constant with respect to the choice of controls a and b. This fact can be a
difficulty whenever we want that the two following statements hold true at the same time:

1. the triple x∗i,1, x
∗
i,2, x

∗
i,3 is in a neighborhood of the considered node (since the narrow

band must be ”narrow”)

2. computation of w(xi) does not make use of the node xi (in order to achieve
convergence in a finite number of steps).

This is our strategy. First, we compute the optimal controls a∗ and b∗ choosing a time

�� ��������������

���� ����  !!

""##
x xi

z*

i

i

Figure 3.18: Choice of discretization step h

step hi such that the point zi := xi + hif(xi, a, b) is in the four neighboring cells of the
point xi. More precisely, we choose hi = ∆x/maxa,b |f(xi, a, b)|. At this level it is possible
that the point z∗i := xi + hif(xi, a

∗, b∗) is very close to xi so that the node xi is in the
triple (x∗i,1, x

∗
i,2, x

∗
i,3) and this must be avoided (see Fig. 3.18-left).

Once (a∗, b∗) is computed, we define h∗i = ∆x/|f(xi, a∗, b∗)| and then we compute
w(xi + h∗i f(xi, a

∗, b∗)) by interpolation (see Fig. 3.18-right). This choice allows to avoid
to use the value at xi in the linear interpolation and this is crucial to establish convergence
in a finite number of steps as in the FM-SL.
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method ∆x L∞ error L1 error CPU time (sec)

FM-SL for games 0.16 0.0433 0.5416 51

SL iterative 0.16 0.0449 0.5407 276

FM-SL for games 0.08 0.0257 0.2918 180

SL iterative 0.08 0.0286 0.2927 1845

Table 3.5: error table for Test 1

3.3.2 Numerical experiments

All numerical experiments were performed on a PC with a Pentium IV 3.06 GHz processor
and 512 MB RAM. The CPU times refer to a Matlab (version 7) implementation.

Test 1: Tag-Chase game

f(x, y, a, b) = VPa− VEb , A = B = B(0, 1)

Q = [−2, 2]2 , T = B(0, 0.1)

The grid has 51× 51 nodes (corresponding to ∆x = ∆y = 0.08) and the unit ball B(0, 1)
is discretized in 36 controls (all placed at the boundary) for both players P and E. We
have chosen VP = 2, VE = 1 in order to guarantee the capture of E.
It is easy to show that the optimal controls are a∗ = (−x,−y)

|(−x,−y)| and b
∗ = −a∗.

The exact solution is T (x, y) = − ln(1 − v) =
√
x2 + y2 − 0.1 (i.e. the distance from the

target).
In Table 3.5 we compare our algorithm and the classical iterative SL scheme computing
the L∞ and L1 error and CPU time. In Fig. 3.19 we show the level sets of the value

grid= 51x51contrs= 36x36 SL−FMM for diff games
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Figure 3.19: Test 1. Level sets of T = − ln(1−w) (left) and an optimal trajectory (right).

function T computed by our algorithm and an optimal trajectory in the real plane when
P starts from the point (3, 3.5) and E starts from the point (2, 2).

Test 2: Tag-Chase game with constraints on the directions
This game has the same dynamics of the previous one. The only difference is that now
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the pursuer P has a constraint on his displacement directions. He can choose his control
a = (cos θ, sin θ) only for θ ∈ [π/4, 7π/4]. We chose a grid of 51×51 nodes, (corresponding
to ∆x = ∆y = 0.08) and 16 controls for both players P and E. The CPU time of our
algorithm was 36 seconds and that of the classical iterative SL scheme was 662 seconds.
In Fig. 3.20 we show the value function T = − ln(1− v) computed by our algorithm and
its level sets. We can see some oscillations in the value function. This is due to the fact
that in this case the propagation of the front is anisotropic and the FM method (as in the
original version proposed by Sethian in [85]) can not deal with this kind of velocity field.
In other words, assumptions of Theorem 3.10 does not hold true.
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Figure 3.20: Test 2. Value function T = − ln(1− v) (left) and its level sets (right).

Fig. 3.21 shows the level sets of the solution computed by the classical iterative SL scheme.
Any oscillation appears in this case.
Finally, Fig. 3.22 shows the optimal trajectories in the real plane when P starts from the
point (−3.5, 0) and E starts from the point (−2, 1.5).

grid= 51x51contrs= 16x16 SL−FMM for diff games
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.21: Test 2. Iterative SL scheme. Level sets of the value function.
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Figure 3.22: Test 2. Optimal trajectories.

3.4 A non-monotone Fast Marching method

In this section we propose a new Fast Marching method based on a finite difference
discretization for the following time-dependent eikonal equation

{
ut(x, y, t) = c(x, y, t)|∇u(x, y, t)| R

2 × (0, T )

u(x, y, 0) = u0(x, y) R
2.

(3.47)

The above equation describes the propagation of a front Γ0 = ∂Ω0 moving along its normal
direction with speed c(x, y, t) (see section 1.3).
The new algorithm was presented for the first time in [25]. It is an extension of the FM
method since it can deal with a time-dependent velocity without any restrictions on its
sign.
As we know by previous chapter, the FM method is based on the following equation

c(x, y)|∇T (x, y)| = 1 (3.48)

which is the stationary version of equation (3.47) whenever c = c(x, y) > 0. In FM
method the computation of the solution proceeds in an increasing order accepting at each
iteration the smallest value of the nodes in the current narrow band. The minimal value of
the narrow band can be considered exact (within the discretization error) in the sense that
it can not be improved in the following iterations. This fact allows us to deal easily with a
time-dependent speed function using the current minimal value of the narrow band as time
t and then to evaluate the speed function c(x, y, t) during the computation. Using this
basic idea, Vladimirsky [98] extended the FM method to a signed explicit time-depending
function c = c(x, y, t) and proved that in this case the evolution of front can be recovered
as the level set of the time-independent function T (x, y) which is the unique viscosity
solution of the equation

c(x, y, T (x, y))|∇T (x, y)| = 1. (3.49)

In order to treat the non-monotone case in which speed is allowed to have different signs in
different regions and/or to change sign in time, we introduce some important modifications
to the classical scheme.
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1) We perform a slight modification of the function c. If there are two or more regions
with different sign for c at the same time, we force the speed to be exactly zero on
the boundaries of these regions so that the evolution of the front in each region can be
considered completely separate. We will refer to the modified function as numerical speed
and it will be denoted with ĉ.
2) Our new narrow band is the set of nodes which are going to be reached by the front
and the nodes just reached by the front. This allows to deal with changes of sign of the
velocity in time.

3.4.1 The FM scheme for unsigned velocity

In this section we give details for our FM algorithm for unsigned velocity. We describe
the evolution of the front using an auxiliary function:

θ(x, y, t) =

{
−1 if u(x, y, t) ≥ 0
+1 otherwise.

Notations and preliminary definitions

We consider a subset Q of R
2 where we want to compute the approximate solution and

we define a structured grid Q∆ = {(i, j) ∈ Z
2 : (xi, yj) = (i∆, j∆) ∈ Q} with space step

∆. Moreover, we denote by 0 < t1 < ... < tn < ... < tN ≤ T a non uniform grid on [0, T ],
where tn is the physical evolution time computed in each iteration of the FM method. We
note that the partition of the time interval is not known a priori.

We introduce some definitions which will be useful in the sequel.

Definition 3.11 We define neighborhood of the node (i, j) the set

NFD(i, j) = {(l,m) ∈ Q∆ such that |(l,m)− (i, j)| = 1}.

Definition 3.12 Given the speed cni,j := c(xi, yj , tn) for all i, j, n, we define the
numerical speed as

ĉni,j =





0 if there exists (l,m) ∈ NFD(i, j) such that
cni,jc

n
l,m < 0 and |cni,j | ≤ |cnl,m|,

cni,j otherwise.

Definition 3.13 Given θnij = θ(xi, yj , tn) for all i, j, n, we define the fronts F n
+ and Fn

−
by

Fn
± = NFD(E)\E, where E = {(i, j) ∈ Q∆ : θni,j = ∓1} and F n := Fn

+ ∪ Fn
−.

Remark 3.14 . We should point out that the main difference with respect to the classical
FM algorithm is the presence of two fronts: F+ and F− (see Fig. 3.23).
If the speed is positive (negative) the front propagates using only the information coming
from F+ (F−).
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Figure 3.23: the fronts F+ and F−

We give here a brief description of the algorithm. We note that it is more complicated
with respect the classical FM method, this is mainly due to the fact that it was developed
in such a way it is possible to prove its convergence to the viscosity solution of equation
(3.47) by a new direct proof. The interested reader is referred to [27] for the convergence
of the scheme.

Description of the FM algorithm for unsigned velocity

We need a discrete function TI to indicate the approximate physical time for the front
propagation on the nodes I = (i, j) of the fronts.

Initialization

1. n = 1

2. Initialization of the matrix θ0

θ0I =

{
1 if (xi, yj) ∈ Ω0

−1 if (xi, yj) ∈ Q \ Ω0

3. Initialization of the time on the fronts
T 0
I = 0 for all I ∈ F 0

Main cycle

4. Computation of T̃n−1
I .

We define T̂n−1
±,J =

{
Tn−1
J if J ∈ Fn−1

±
+∞ elsewhere.

Let I ∈ F n−1
∓ , then

(a) if ±ĉn−1
I ≤ 0, T̃n−1

I = +∞,

(b) if ±ĉn−1
I > 0, then we compute T̃n−1

I as the greater solution of the following
second order equation:

2∑

k=1

(
max
±

(
0, T̃n−1

I − T̂n−1
+,Ik,±

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
−
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2∑

k=1

(
max
±

(
0, T̃n−1

I − T̂n−1
−,Ik,±

))2

=
(∆x)2

|ĉn−1
I |2

if I ∈ Fn−1
+

where

Ik,± =

{
(i± 1, j) if k = 1
(i, j ± 1) if k = 2

5. t̂n = min
{
T̃n−1
I , I ∈ Fn−1

}

6. t̃n =

{
t̂n if t̂n <∞
tn−1 + δ if t̂n =∞

where δ is a small constant, see following Remark 3.15

7. tn = max(tn−1, t̃n)

8. if tn = tn−1 + δ go to 4 with n := n+ 1

9. Initialization of new accepted points
NAn

± = {I ∈ F n−1
± , T̃n−1

I = t̃n}, NAn = NAn
+ ∪NAn

−

10. Reinitialization of θn

θnI =





−1 if I ∈ NAn
+

1 if I ∈ NAn
−

θn−1
I elsewhere

11. Reinitialization of T n

(a) If I ∈ F n\NFD(NA
n) then TnI = Tn−1

I

(b) If I ∈ NAn then TnI = tn

(c) If I ∈ (F n−1 ∩NFD(NA
n))\(NAn), then TnI = Tn−1

I

(d) If I ∈ NFD(NA
n)\Fn−1 then TnI = tn

12. Go to 4 with n := n+ 1

Remark 3.15 The time computed in step 5 is the physical time, instead t̃ in step 6 is an
artificial time that allows to advance in time in any case. For example, if at the iteration
n we have ĉn−1

I = 0 for all I ∈ F n−1
± , then there will not be new accepted point. Therefore

the algorithm will be blocked. The term δ have to be small enough (like ∆
|ĉn−1|).

Possible large time step could be computed when the speed is close to zero so that t̃n could
be very large. For this reason in step 8 we bound the size of the time step by δ.

Remark 3.16 In step 11 we change T nI only if a point of the neighborhood of I has been
accepted.

Boundary conditions on ∂Q
The management of the boundary conditions is quite simple. As in the classical FM
method we can assign to the nodes of the boundary a value, like +∞, such that these
nodes will not contribute at the computations. Then, at the end of the algorithm, these
nodes will be cut off.
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3.4.2 Numerical experiments

We present some simulations which show the good behavior of this new schemes.

Test 1
In the first test we choose a unit circle as initial front which evolves with speed

c(x, y, t) =





2 x ≥ 0 , t ≤ 0.3
−1 x < 0 , t ≤ 0.3
−2 x ≥ 0 , t > 0.3
1 x < 0 , t > 0.3

The approximated solution is shown in Fig. 3.24.
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Figure 3.24: non monotone evolution of a circle, t ≤ 0.3 (left) and t > 0.3 (right)

Test 2
The second test regards the rotation of a line. We consider the square [−1, 1]2 and
we approximate the evolution of a line crossing the {x = 0} axis with the velocity
c(x, y, t) = −x. We set θ0 = −1 above the line and θ0 = 1 below. By easy computations,

Figure 3.25: Rotation of a line

one expects that a straight line remains a straight line for all t > 0 and that it rotates
around the axis {x = 0} (where the velocity is zero). Indeed, let us consider a generic
straight line r = {(x, y) : y = ax+ b} and a point (x0, y0) ∈ r. We denote by (x1, y1) the
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image of (x0, y0) after the time ∆t. A first order expansion gives

(x1, y1) = (x0, y0)−
∆tx0√
1 + a2

(−a, 1)

and then

y1 =

(
a−∆t

1 + a∆t

)
x1 + b.

Since (x1, y1) satisfies the equation of a line we deduce that a straight line always remains
a straight line. Fig. 3.25 shows that our algorithm computes what one expects.
Moreover, one can observe that the velocity of rotation of the line decreases when it
approaches the axis {x = 0}. This is due to the fact that the velocity decreases near this
axis.

Test 3
We propose a third test regarding the evolution of a circle centered in the origin, with a
speed c(x, y, t) = 0.1t − x. As shown in Fig. 3.26, the circle translates on the left and
propagates in a self similar way. This test is run with ∆x = 2π/300. The front is plotted
every 0.5 physical time iterations with final time T = 5 and the solution is compared with
that approximated by the classical finite difference scheme (FD) for equation (3.47).

Figure 3.26: Evolution of a circle with FD Figure 3.27: Evolution of a circle with the
FM method

Test 4
Finally we propose a fourth test regarding the evolution of two circles. We set θ0 = 1
inside the circles and θ0 = −1 outside. We choose a velocity which changes sign in time,
c(x, y, t) = 1 − t. This test is run with ∆x = 2π/300. The front is plotted every 0.2
physical time with final time T = 2.6.
In Fig. 3.28 and 3.29 we show the result and we compare it with the approximation
computed by the classical finite difference scheme for (3.47).

3.4.3 Application to dislocation dynamics

Our method can be extended to dislocations dynamic problems where the velocity of the
front depends on the position of the front itself so that the velocity is time-dependent and
it can also change sign. The Fast marching approach is motivated by the fact that the
traditional iterative algorithm does not work very well since the representative function u
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Figure 3.28: Increasing (left) and decreasing (right) evolution of two circles with FM

Figure 3.29: Increasing (left) and decreasing (right) evolution of two circles by classical
FD scheme

becomes more and more flat around its 0-level set.
The problem consists in solving the following non-local Hamilton-Jacobi equation

{
ut(x, y, t) = c0(x, y) ? [u](x, y, t)|∇u(x, y, t)| R

2 × (0, T )

u(x, y, 0) = u0(x, y) R
2

(3.50)

where the kernel c0 is a given function and depends only on the space, ? denotes the
convolution in space and [u] is defined by

[u] :=

{
1 u ≥ 0
0 u < 0

The 0-level set of the solution of (3.50) represents a dislocation line in a 2D plane. We
refer to [1] for a physical presentation of the model for dislocation dynamics. In [25] there
is a numerical test regarding the relaxation of a sinusoidal dislocation line.



Chapter 4

Numerical solution of the
Perspective Shape-from-Shading
problem

The Shape-from-Shading problem consists in reconstructing the three-dimensional shape
of a scene from the brightness variation (shading) in a greylevel photograph of that scene
(see Fig. 4.1).

−→
Figure 4.1: initial image (left) and reconstructed surface (right)

The study of the Shape-from-Shading problem started in the 70s (see [56, 57] and references
therein) and since then a huge number of papers have appeared on this subject. More
recently, the mathematical community was interested in Shape-from-Shading since its
formulation is based on a first order partial differential equation of Hamilton-Jacobi type.
Unfortunately, the numerous assumptions usually introduced in order to make the problem
manageable highly reduce the relevance of the models.
The most common assumptions are (see [29]):
H1 - The image reflects the light uniformly and then the albedo (ratio between energy
reflected and energy captured) is constant.
H2 - The material is Lambertian, i.e. the intensity of the reflected light is proportional to
the scalar product between the direction of the light and the normal to the surface.
H3 - The light source is unique and the rays of light which lighten the scene are parallel.
H4 - Multiple reflections are negligible.
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H5 - The aberrations of the objective are negligible.
H6 - The distance between the scene and the objective is much larger than that between
the objective and the CCD sensor.
H7 - The perspective deformations are negligible.
H8 - The scene is completely visible by the camera, i.e. there are not hidden regions.

Some comments:
Assumptions H1 and H2 are often false for a common material.
Assumption H3 means that we can describe the light direction by a unique and constant
vector. Note that this is true only if the light source is very far from the scene (for example,
if the scene is illuminated by the sun). Naturally, this assumption does not hold in case
of flash illumination.
Assumption H7 means that the camera is very far from the scene and it is obviously false
in most cases.

This chapter is organized as follows. In Section 4.1 we recall the classical model for
Shape-from-Shading problem (SFS in the sequel) which is derived under assumptions H1-
H8. It is based on a very simple equation of eikonal type we already studied in previous
chapters. This model is well known in the literature so that we do not make any study on
it.

In Section 4.2 we get rid of assumption H7 deriving a new Hamilton-Jacobi equation.
The new model (PSFS∞ in the sequel) takes into account the perspective deformation due
to the finite distance between the camera and the scene. As we will see, such a deformation
can be very relevant and the new model greatly overcomes SFS in some reconstructions.
We perform a numerical approximation of the equation related to the new problem via
a semi-Lagrangian discretization. In particular we focus our attention on the effect of
boundary condition. We already presented these results in [40].

In Section 4.3 we abandon both H3 and H7 deriving a third Hamilton-Jacobi equation.
The new model (PSFSr in the sequel) takes into account the perspective deformation of
the photograph like the previous model and the closeness of the light source so it can
deal with photographs taken by means of a flash. Also for this model we perform a semi-
Lagrangian discretization.
Note that the last two models were proposed very recently (after 2001) by several teams.
See Prados and Faugeras [77] (see also Okatani and Deguchi [70]), Tankus, Sochen and
Yeshurun [88], Courteille, Crouzil, Durou and Gurdjos [30]. Since those papers, the
Shape-from-Shading was finally applied to some real problems like reconstruction of faces
([76, 78]), reconstruction of human organs ([90]) and the digitization of ancient books
without scanners ([31, 32, 29]).

In Section 4.4 we will focus our attention on the concave/convex ambiguity in the
PSFS∞ and PSFSr models. We will show some numerical examples and we will prove
that even in these new models an ambiguity exists. This work was already presented in
[36].
Finally, let us mention that an effort has been made to solve the (perspective) Shape-
from-Shading problem by Fast Marching method. See for example [65, 99, 89, 79].

Let us briefly derive the model for Shape-from-Shading under general assumptions.
Let Ω be a bounded set of R

2 and let u(x, y) : Ω → R be a surface which represents
the three-dimensional image/surface we want to reconstruct. The partial differential
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equation related to the Shape-from-Shading model can be derived by the ”image irradiance
equation”

R(n̂(x, y)) = I(x, y) (IE)

where I is the brightness function measured at all points (x, y) in the image, R is the
reflectance function giving the value of the light reflection on the surface as a function
of its orientation (i.e. of its normal) and n̂(x) is the unit normal to the surface at point
(x, y, u(x, y)). If the surface is smooth we have

n̂(x, y) =
(−ux(x, y),−uy(x, y), 1)√

1 + |∇u(x, y)|2
. (4.1)

The brightness function I is the datum in the model since it is measured on each pixel
of the image in terms of a gray level, for example from 0=black to 255=white or, after a
rescaling, from 0 to 1. To construct a continuous model we will assume hereafter that I
takes real values in the interval [0, 1].
Clearly, equation (IE) can be written in different ways depending on which assumptions
H1-H8 hold true.
It is important to note that, whatever the final equation is, in order to compute a solution
we will have to impose some boundary conditions on ∂Ω and/or inside Ω. A natural choice
is to consider Dirichlet type boundary conditions in order to take into account at least two
different possibilities. The first corresponds to the assumption that the surface is standing
on a flat background, i.e. we set

u(x, y) = 0 (x, y) ∈ ∂Ω.

The second possibility occurs when the height of the surface on the boundary is known

u(x, y) = g(x, y) (x, y) ∈ ∂Ω.

The above boundary conditions are widely used in the literature although they are often
unrealistic since they assume a previous knowledge of the surface.
We will come back later on this problem.

4.1 The Shape-from-Shading problem

Under assumptions H1-H8, we have

R(n̂(x, y)) = ω · n̂(x, y)

where ω ∈ R
3 is a unit vector which indicates the direction of the light source. Then,

equation (IE) can be written, using (4.1)

I(x)
√

1 + |∇u(x, y)|2 + (ω1, ω2) · ∇u(x, y)− ω3 = 0 , (x, y) ∈ Ω (4.2)

which is a first order non-linear partial differential equation of Hamilton-Jacobi type.
If the light source is vertical, i.e. ω = (0, 0, 1), then equation (4.2) simplifies to the eikonal
equation (√

1

I(x, y)2
− 1

)−1

|∇u| = 1 , (x, y) ∈ Ω. (4.3)
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Points (x, y) where I is maximal (i.e. equal to 1) correspond to the particular situation
when ω and n̂ point in the same direction. These points are usually called ”singular
points” and, if they exist, equation 4.3 is said to be degenerate (see Remark 1.7). The
notion of singular points is strictly related to that of concave/convex ambiguity which we
briefly recall here.

4.1.1 Concave/convex ambiguity

The SFS problem is one of the most famous examples of ill-posed problem.
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Figure 4.2: two different surfaces corresponding to the same brightness function I

Consider for example the two surfaces z = +
√

1− x2 − y2 and z = −
√

1− x2 − y2 (see
Fig. 4.2). It is easy to see that they have the same brightness function I and verify the
same boundary condition so that they are virtually indistinguishable by the model. As a
consequence, even if we compute a viscosity solution of the equation, it is possible that the
solution we obtained is different from the surface we expect. Note that this is an intrinsic
problem and it can not be completely solved without a modification of the model.
In order to overcome this difficulty, the problem is usually solved by adding some
informations such as the height at the singular points (see [68]). More recently, an attempt
as been made to eliminate the need for a priori additional information by means of the
characterization of the maximal solution (see [60, 19]). A result by Ishii and Ramaswamy
[60] guarantees that if I is continuous and the number of singular points is finite, then a
unique maximal solution exists. Following this approach, some algorithms to approximate
the unique maximal solutions were proposed (see for example [82, 43] and references
therein).

4.2 The PSFS∞ problem

In this section we get rid of assumption H7 so we will take into account the perspective
deformation due to the fact that the camera is close to the scene.

4.2.1 The model

Let us define the model adopting the same notations used in [31]. The point (X0, Y0) is
the principal point of the image, d and d′ are respectively the distance of the objective



The PSFS∞ problem 91

from the perspective plane (the CCD sensor) and the distance of the objective from the
(flat) background, l and l′ = d′

d l are respectively the length of a generic segment in the
perspective plane and the length of the real segment corresponding to it (see Figure 4.3 and
[31] for more details). The representation of the surface in terms of the (X,Y ) coordinates

$%
&' ()(*)*

P

l’ l

Π

X

d’ d

Y

y
z

x

Figure 4.3: the PSFS∞ model

of the points in the perspective plane Π is given by three parametric equations

x = r(X,Y ), y = s(X,Y ), z = t(X,Y ) (4.4)

where (see [31])

{
r(X,Y ) = X−X0

d t(X,Y )

s(X,Y ) = Y−Y0
d t(X,Y )

. (4.5)

Then the problem amounts to compute the third component t. This is the most difficult
task since t is the solution of the following eikonal type equation

(
d

t(X,Y )

)2

|∇t(X,Y )|2 = I2max
I ′(X,Y )2

− 1 in Ω (4.6)

where Ω is the internal region bounded by the silhouette of the object (∂Ω will denote its
boundary) which is embedded in a rectangular domain Q,

t(X,Y ) = t(X,Y ) + (X −X0, Y − Y0) · ∇t(X,Y ), (4.7)

I ′(X,Y ) =
I(X,Y )

cos4α(X,Y )
, (4.8)

cos4(α(X,Y )) =
d4

((X −X0)2 + (Y − Y0)2 + d2)2
, (4.9)

and Imax is a constant depending on parameters of the problem. The set Q \ Ω is the
background.
Defining

f(X,Y ) :=
1

d2

(
I2max

I ′(X,Y )2
− 1

)
(4.10)
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we can write (4.6) as
|∇t(X,Y )| =

√
f(X,Y )

∣∣t̄(X,Y )
∣∣. (4.11)

We want to write (4.11) in a fixed point form and construct an approximation scheme for
this equation. To this end it is important to note that t̄ has a sign. In fact, the exterior
normal to the original surface in the point P is given by

n̂(P ) = N(P )/|N(P )| (4.12)

where
N(P ) = (d tX(X,Y ), d tY (X,Y ),−t̄(X,Y )) (4.13)

and since −t̄ must be positive (according to the orientation of the z axis in Figure 4.3, t̄
must be negative. This implies that (4.11) is in fact

|∇t(X,Y )|+
√
f(X,Y )(t(X,Y ) + (X −X0, Y − Y0) · ∇t(X,Y )) = 0 (4.14)

which can be written in short as

H((X,Y ), t,∇t) = 0 , in Ω (4.15)

where the Hamiltonian H represents the left-hand side of (4.14).
Finally, let us consider equation (4.14) complemented with the Dirichlet boundary
condition

t = g(X,Y ) on ∂Ω, where − d′ ≤ g ≤ 0. (4.16)

4.2.2 Numerical approximation

The usual semi-Lagrangian scheme for (4.14)-(4.16) is

t(X,Y ) = F [t](X,Y ) in Ω (4.17)

where

F [t](X,Y ) :=
1

1 + h
inf

a∈B(0,1)
{t (bh(X,Y, a))} in Ω , (4.18)

bh(X,Y, a) = (X,Y ) + h

(−a√
f
− (X,Y )

)
(X,Y ) ∈ Ω, a ∈ B(0, 1) (4.19)

and B(0, 1) is the unit ball in R
2.

Let us examine the properties of the F operator in order to guarantee convergence for the
fixed point iteration. First, let us introduce the following space:

W = {w : Ω→ R, such that w|∂Ω = g} (4.20)

Note that W is a space of functions satisfying the Dirichlet boundary condition w = g on
∂Ω.

Lemma 4.1 Under the above assumptions, the following properties hold true:
a) F is a contraction mapping in L∞(Ω);
b) F is monotone, i.e. s ≤ t implies F [s] ≤ F [t];
c) Let V = {w ∈W : −d′ ≤ w(X,Y ) ≤ 0}, then F : V → V ;
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Proof .
a) Let us take two functions, t and s. For every ξ = (X,Y ), we have

F [t](ξ)− F [s](ξ) ≤
1

1 + h

[
inf

a∈B(0,1)

{
t

(
ξ + h

(−a√
f
− ξ
))}

− inf
a∈B(0,1)

{
s

(
ξ + h

(−a√
f
− ξ
))}]

≤

1

1 + h

[
t

(
ξ + h

(−a∗√
f
− ξ
))

− s
(
ξ + h

(−a∗√
f
− ξ
))]

≤

1

1 + h
‖t− s‖∞

where a∗ is the direction where the infimum for s is attained. Replacing the role of t and
s one obtains the reverse inequality and proves

‖F [t]− F [s]‖∞ ≤ 1

1 + h
‖t− s‖∞. (4.21)

b) The monotonicity with respect to t is a direct consequence of the definition of F since
the coefficient in front of the inf is strictly positive.

c) It is a direct consequence of b) and of

F [0] = 0, F [−d′] = −d′
1 + h

> −d′. (4.22)

¥

Now let us examine the algorithm. Lemma 4.1 assures that, starting from any initial guess
t0 which satisfies the boundary conditions, the fixed point iteration

t(n+1) = F [t(n)] (4.23)

converges to the unique solution t∗ (fixed point).
We note that a direct consequence of the above Lemma is that one can obtain a monotone
increasing convergence just starting from any function below the final solution, e.g.
choosing t(0) ≡ −d′ in the internal nodes and imposing the Dirichlet boundary condition
t(0) = g(X,Y ) on ∂Ω. Moreover, the property b) guarantees that t̄(n) (defined in (4.7)) is
negative for all (X,Y ) ∈ Ω at every iteration, so the equation associated to the problem
is always (4.14).

4.2.3 Creation of a virtual perspective image and computation

In this section we will describe how we construct a virtual image to test the PSFS∞
algorithm described in the previous section. We developed this procedure to produce
some synthetic images that will be used as benchmarks for our algorithm.
The starting point is the choice of a surface u = u(x, y). Note that all figures refer to the
example of a tent (u(x, y) = 1− |x|, (x, y) ∈ [−1, 1]2) but the procedure is valid for every
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(graph) surface.

Pre-processing
Given u = u(x, y), we compute (analitically or numerically) the unit normal vector n̂(P )
at every point and we compute the light function

I(x, y) = ω · n̂(P )

where ω is the direction of the source light. In our tests we fixed ω = (0, 0, 1) so we have

I(x, y) =
1√

1 + u2x + u2y

.

We consider a rectangular n×n grid G′ := {(xi′ , yj′)} where i′ = 1, . . . , n and j′ = 1, . . . , n
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Figure 4.4: Initial surface u(x, y) (left) and computed light function I(i′, j′) (right)

on which we compute two matrices I(i′, j′) and u(i′, j′), i′, j′ = 1, . . . , n (see figure 4.4).

Let us ”take a photograph” of the surface. Every discrete coordinates (i′, j′) correspond to
a point (x, y, u(x, y)) belonging to the surface and every point (x, y, u(x, y)) is associated
to a pair (X,Y ) on the perspective plane by the transformation





X−X0
d = x

u

Y−Y0
d = y

u

(4.24)

Varying i′, j′ in {1, . . . , n}, we obtain the set
{
(Xi′j′ , Yi′j′)

}
i′,j′=1,...,n

(4.25)

which is the (discrete) domain of the perpective image (see Figure 4.5).

Remark 4.2 The transformation (4.24) is not injective. In particular, a point (X,Y )
associated to a point (x, y, u(x, y)) belonging to the background can coincide with a point
(X̃, Ỹ ) associated to a point (x̃, ỹ, ũ(x̃, ỹ)) belonging to the surface. This the case of the
tent as shown in Figure 4.6. This is due to the fact that distance camera-object is finite
which implies the existence of some areas in full shade (see Figure 4.7).
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Figure 4.5: In white: domain of the perpective image on XY plane. In black: background

Figure 4.6: Discrete domain of the perspective image. CROSS: point coming from the
background, SQUARE: point coming from the object (there are two overlapping regions)

shadow shadow

object

camera

Figure 4.7: areas in full shade

We want to stress that, as a result of transformation (4.24), the set (4.25) loses the
initial ordering in the sense that two adjacent points (X1, Y1), (X2, Y2) in the perspective
XY -plane are not necessarily coming from two adjacent points (x1, y1, u(x1, y1)),
(x2, y2, u(x2, y2)). Then, the resulting ordering does not coincide with that of a structured
grid.
In order to overcome this difficulty and to have an easy implementation of the algorithm,
we discretized again the perspective image using a new rectangular n× n grid G indexed
by i = 1 . . . , n and j = 1 . . . , n. This provides an easy correspondence between (i′, j′) and
(x, y) and between (i, j) and (X,Y ).
Then, we find the relationship between (i, j) and (i′, j′). Roughly speaking, we associate
a pair (X,Y ) to every node (i, j) and then we find the four closest points to (X,Y ) in
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the set (4.25). These four points are associated to four nodes in the grid G′ on which
the original light function I and the original surface u are defined. Given this correlation,
we easily obtain the matrix representation I(i, j) of the function I(X,Y ), that is the
perspective image in the XY -plane simply applying an interpolation rule (typically linear
interpolation). Moreover, we can compute, in the same way, the function t(X,Y ), that is
the solution to our problem.
Note that in the case of the tent the computation of I(X,Y ) is trivial because I(x, y) is
constant. See Figure 4.8.
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Figure 4.8: gray level of the photograph (left) and the solution t(X,Y ) of equation (right)

Boundary conditions and Computation
The assignment of boundary conditions is very easy and consists in computation of t(X,Y )
(as showed above) only in the required nodes. As mentioned before, we choose t(0) = −d′
in internal nodes (that is inside Ω). Moreover, it is recommended initializing external
nodes (that is outside Ω, where no computation is needed) with the value t(0) = 0 which is
the greatest value t can attain. This choice avoid the risk that the scheme uses some values
coming from the background, because the evaluation of the infimum will automatically
reject them.
Now we are ready to compute the solution using the scheme (4.17) and the fixed point
technique.

Post-processing
Once we computed the approximate solution t(X,Y ), we can easily compute r(X,Y ) and
s(X,Y ) as in (4.5) and then we can draw the surface

{(r(X,Y ), s(X,Y ), t(X,Y )), (X,Y ) ∈ Ω}
given in parametric form to be compared with the exact solution in terms of u and I (see
Figure 4.9).
Finally we note that, due to Remark 4.2, the computed surface with its background can
have some ”holes” in its domain in correspondence with areas in full shade. In other
words, in the process we may lose some informations about the initial surface (see Figure
4.9 and 4.10). In Figure 4.10-right black areas correspond to points not visible by the
objective.
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Figure 4.9: approximate solution (r, s, t) of the problem given in parametric form

Figure 4.10: Initial domain of the object (left), perspective domain of the photograph
(center) and reconstructed domain of the object (right)

4.2.4 Other boundary conditions and their effects

Beside the difficulty related to the concave/convex ambiguity which is behind the non
uniqueness of viscosity solutions there is another difficulty which arises in the PDE
approach. It is well known that in this approach one has to complement the equation
with some boundary conditions to select a unique solution and to run the algorithm. This
is a limitation with respect to minimization algorithms where such boundary conditions
are not needed and the search for the solution is done via a gradient method or a line
search algorithm. Naturally the solution computed by those algorithms will, in general, be
different from the exact solution. However, in practical applications boundary conditions
on the surface are seldom known, so it useful to analyse in more detail the effect of different
types of boundary conditions on the solution in order to define a minimal set of conditions
which will allow to compute the exact solution.
In this section, we will briefly analyse the effect of Dirichlet, Neumann and state constraints
boundary conditions on subsets of the boundary. Let us note first that boundary conditions
should be imposed in a weak sense. The typical condition which defines a viscosity
subsolution u for (4.15) requires that for any test function ϕ ∈ C1(Ω) and x ∈ ∂Ω local
maximum point for u− ϕ

min{H(x, u(x), Dϕ(x)), B(x, u,Dϕ(x))} ≤ 0 (4.26)

where the function B is the operator describing the boundary conditions, f.e.
B(x, u,Du) = u − g for the Dirichlet condition. Similarly, the boundary condition for
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supersolutions requires that for any test function ϕ ∈ C1(Ω) and x ∈ ∂Ω local minimum
point for u− ϕ

max{H(x, u(x), Dϕ(x)), B(x, u,Dϕ(x))} ≥ 0. (4.27)

The effect of the Dirichlet condition is to impose a value on u according to the
above conditions, in particular the value u(x) = g(x) is set at every point where
H(x, u(x), Dϕ(x)) ≥ 0 (for subsolutions) and H(x, u(x), Dϕ(x)) ≤ 0 (for supersolutions).

Neumann boundary conditions correspond to the operator B(x, u,Du) = ∂u/∂n(x)−
m(x) where n(·) represents the outward normal to the domain Ω. A typical use of it is
when we know (or we presume) that the level curves of the surface are orthogonal to the
boundary ∂Ω or to a subset of it where we simply choose m(x) = 0.

The state constraints boundary condition is different from the above conditions since
we do not impose neither a value for u nor a value for its normal derivative ∂u/∂n(x)
(cfr. [18]). In this respect it has been interpreted as a ”no boundary condition” choice
although this interpretation is rather sloppy. In fact, a real function u bounded and
uniformly continuous is said to be a state constraints viscosity solution if and only if it
is a subsolution (in the viscosity sense) in Ω and a supersolution in Ω (i.e. up to the
boundary). It can be also stated as a Dirichlet boundary condition simply setting

g = Cg = constant provided Cg > max
x∈Ω

u(x)

(note that in our problem, by Lemma 4.1, an easy choice satisfying the above condition is
Cg = 0). By this choice (4.26) is trivially satisfied, whereas (4.27) requires (strictly)

H(x, u(x), Dϕ(x)) ≥ 0. (4.28)

In our algorithm, the fixed point operator F looks for a minimum on neighbouring points
bh(X,Y, a) so we can obtain the same result if we define the solution outside Ω to be
t = C ≥ 0 so that searching for a minimum all directions a ∈ B(0, 1) will be excluded.
The effect of state constraints boundary condition is to look for the minimum inside Ω.
It is interesting to note that if we adopt state constraints boundary conditions and we start
from t(0) ≡ C = constant, the scheme will produce the sequence t(n) ≡ (1 + h)−nC which
converges to 0 everywhere in Ω. Clearly, t = 0 is not a meaningful solution. However, if
we fix the value at even a single point x∗ ∈ Ω the solution will have a minimum at x∗ and
we will have u(x) > u(x∗) for every x ∈ Ω. So the effect of the state constraints boundary
conditions is to produce solutions which increase when x gets close to the boundary ∂Ω.

4.2.5 Numerical experiments

In this section we present some numerical experiments on synthetic images, on a real
non perspective image with an artificial perspective deformation and finally on a real
photograph with visible perspective deformation.

Synthetic images
For tests on synthetic images we have chosen in all cases the following parameters:

X0 = 0, Y0 = 0, d = 1, d′ = 4, l = 0.75, l′ = 3.

The computational procedure follows the steps described in the previous sections. Both
G and G′ are 121× 121 grids and the number of controls for the discretization of the unit
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ball B(0, 1) is 16 (all placed on the boundary ∂B(0, 1)). The iterative algorithm stops
when ||t(n+1) − t(n)||∞ ≤ ε.
In each subsection we present a) the original surface, b) its light function (in the xy-
plane), c) the light function in the perspective XY -plane (that is the photograph) and d)
the reconstructed surface. Finally, we compute the error estimate in L∞-norm comparing
the solution t (computed during the preprocessing step) with the approximate solution of
the equation (4.14). Note that what we name ”solution t” was actually computed by an
interpolation so this is not a comparison with the real exact solution t. Nevertheless, this
is a very reasonable way to calculate the accuracy of the algorithm because computation
starts from the function I(i, j) which was computed by the same interpolation too.

Remark: we choose a variable step discretization h in (4.18) depending on X,Y and
a in such a way that

h(X,Y, a)

(−a√
f
− (X,Y )

)
= ∆x for all X,Y, a

where ∆x is the space step discretization. This trick reduces the number of iterations
needed to reach convergence. Finally, we define hmin := min

X,Y,a
h(X,Y, a).
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Tent (I discontinuous)
This test is a slight modification of the tent used in Section 4.2.3. The main difference
here is that I is discontinuous (whereas in the previous example I was constant). The
solution t is non regular but the boundary conditions are very simple, 0 on every side of
the square. One can see that the algorithm is accurate around the kinks and that the
error in the max norm is about 10∆x (see Table 4.1).

u(x, y) =





2(1− |y|) x ∈ [−1, 1], y ∈ [−1,− 1
2 |x| − 1

2 ]
2(1− |y|) x ∈ [−1, 1], y ∈ [ 12 |x|+ 1

2 , 1])
1− |x| otherwise
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Figure 4.11: a) the original surface, b) its light function in the xy-plane, c) light function
in the perspective XY -plane, d) the approximate surface

number of iterations hmin ∆x ε L∞ error

52 0.0046 0.00625 10−7 0.064

Table 4.1: L∞ error
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Very regular surface (I continuous)
This test has been created to check the accuracy on a regular surface which has a line of
singular points (where I(X,Y ) = 1). This line is truncated in the real computation and
substituted by the value 0.9999. The boundary conditions are not homogeneous: they are
0 on the left- and right-hand sides of the square, and b(x, y) = 1−x2 on the top and bottom
sides of the square. The algorithm stops after 1613 iteration with a hmin = 8.8 · 10−5. It
is interesting to note that also in this case the error is 10∆x.

u(x, y) = 1− x2, (x, y) ∈ [−1, 1]2
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Figure 4.12: a) the original surface, b) its light function in the xy-plane, c) light function
in the perspective XY -plane, d) the approximate surface

number of iterations hmin ∆x ε L∞ error

1613 8.8 · 10−5 0.00625 10−7 0.0418

Table 4.2: L∞ error
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Synthetic book image (I continuous)
The last test is a tentative to reconstruct a synthetic surface as close as possible to the
shape of a single page of a book. Again I and u are regular. The boundary conditions are
not homogeneous: 0 on the left-hand side of the square, a positive constant on the right-
hand side and a polynomial function g(X,Y ) on the top and bottom sides of the square.
Note that hmin = 1.428 · 10−4 and that the approximate solution after 260 iterations has
an error of the order 10∆x.

u(x, y) =
1

120

(
b (225|x|)3 + c (225|x|)2 + d 225|x|

)

where
b = 1.09 · 10−5, c = −6.21 · 10−3, d = 0.883
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Figure 4.13: a) the original surface, b) its light function in the xy-plane, c) light function
in the perspective XY -plane, d) the approximate surface

number of iterations hmin ∆x ε L∞ error

260 1.428 · 10−4 0.00625 10−7 0.0536

Table 4.3: L∞ error
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Real image with synthetic perspective

In this test we used a real photograph of a vase with a negligible perspective deformation,
so we modified it by an artificial perspective deformation as in the previous tests.
For this image the parameters values are d = 1, l′ = 2, d′ = 4, l = d

d′ l
′ = 0.5, ∆x = 0.0042

and Imax = 1. Figure 4.14 shows the photograph and the reconstructed surface computed
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Figure 4.14: photograph, 121 x 121 pixels (left) and reconstructed surface with Dirichlet
boundary condition (right)

using Dirichlet boundary conditions u = g, where g is the real height of the vase on ∂Ω.
It is easy to verify that the numerical solution does not match the boundary conditions
on the top and on the bottom of the vase (the error is high particularly on the top).
Numerical tests show that in this simple case the values of t(X,Y ) inside the domain
depend only on its values on the left and right boundaries of the image. Therefore we can
substitute Dirichlet boundary condition by state constraints on the top and bottom part of
the boundary without any change in the solution. Figure 4.15-left shows the approximate
solution in this case. As expected, the approximate solution is very good even if we do not
impose Dirichlet boundary condition on the whole boundary. We want to emphasize that
the knowledge of the exact solution t on ∂Ω can be considered in general a completely
non-realistic assumption (because the height of the surface is exactly what we want to
know) but in this simple case we are able to compute the exact solution also under realistic
assumptions.
Finally, we computed the solution with Dirichlet boundary condition on the right and left
side and Neumann boundary condition elsewhere. This is ”realistic” boundary condition
because we can assume that vase is flat on the top and on the bottom. Figure 4.15-right
shows the result.
The average error (with respect to the exact solution) of the three tests is 0.043. In all
cases, the iterative procedure converges in 65 iterations, with ε = 10−7.

Real image

In this test we used a real photograph where the effect of perspective is visible.
The surface is a sheet of paper with the shape of a roof tile. For this image the parameter
values are: l = 6.91mm, d = 5.8mm, l′ = 200mm, d′ = l′

l d = 167.87mm, ∆x = 0.05mm.
We note that we performed the light correction (4.8) in the preprocessing step, so we can
assume Imax = 1 during computation.
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Figure 4.15: reconstructed surface with Dirichlet and state constraints boundary condition
(left) and reconstructed surface with Dirichlet and Neumann boundary condition (right)

−100

−50

0

50

100

−100
−80

−60
−40

−20
0

20
40

60
80

100

0

20

40

Figure 4.16: photographs, 128 x 128 pixels (left) and reconstructed surface with Dirichlet
and state constraints boundary condition (right)

Figure 4.16 shows the photograph (128× 128 pixels) and the surface reconstructed using
Dirichlet boundary condition only on the left and right sides of the boundary and state
constraints elsewhere (top and bottom sides). We can see that the solution is quite good
considering the fact that light source (flash camera) is not far from the object and that
direction of light source is not perfectly vertical as the mathematical model would have
required.
We also tried to reconstruct the surface with two more practical boundary conditions. In
the first case, we fixed a Dirichlet condition t0 only on a vertical line in the center of the
image (column 64) and then we turned over the computed surface with respect to the
value t0 (see Figure 4.17-left). Note that the solution is not very sensitive with respect to
value t0, so a rough knowledge of the behavior of the surface can be sufficient. We can see
that the solution is quite good. We have a large maximum norm error on the boundary
(17.7mm, 41% of the maximum height of the tile), but not inside. In fact, assuming that
the reconstructed surface in Figure 4.16-right is the exact solution, the average error on
all nodes for Figure 4.17-left is about 1.2mm.
In the second case (see Figure 4.17-right), we fixed a Dirichlet condition t0 only on the
point (64, 64) (at the center of the image) and then we turned over the computed surface
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as before. Note that in this case the solution has a shape very different from the expected
solution since it has a global maximum at the central point (64, 64).
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Figure 4.17: reconstructed surface with Dirichlet boundary condition on the center line
(left) and reconstructed surface with Dirichlet boundary condition on one point (right,
different scale)

In these three tests the iterative procedure converges respectively in 167, 185 and 190
iterations, with ε = 10−6.

4.3 The PSFSr problem

In this section we get rid of assumptions H7 and H3 so we take into account the perspective
deformation and the closeness of the light source which is now located at the optical center.

4.3.1 The model

Let us define the model adopting the same notations used in [78]. Let Ω be an open set
of R

n. Ω represents the image domain. We represent the scene by a surface S which can
be explicitly parametrized by using the function S = (S1, S2, S3) : Ω→ R

3, so that

S = {S(x, y) : (x, y) ∈ Ω}.
We denote by O the optical center, by f > 0 the focal length and by M a generic point
on the surface. There exists a function u : Ω→ R such that (see Fig. 4.18)

M =M(x, y) = u(x, y)m′ (4.29)

where

m′ =
f√

x2 + y2 + f2
m and m = (x, y,−f). (4.30)

We also denote by r(x, y) the distance between the light source and the point M(x, y) on
the surface. We have

u(x, y) =
r(x, y)

f
.

By (4.29) and (4.30), we get

S(x, y) = u(x, y)m′ =
fu(x, y)√
x2 + y2 + f2

(x, y,−f) , (x, y) ∈ Ω.
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Figure 4.18: the PSFSr model

For such a surface S, a normal vector n̂(x, y) at the point M(x, y) is given by

n̂(x, y) =
(
f∇u(x, y)− fxu(x, y)

x2 + y2 + f2
, f∇u(x, y)− fyu(x, y)

x2 + y2 + f2
, ∇u(x, y) · (x, y) + f2u(x, y)

x2 + y2 + f2

)
.

(4.31)

For M ∈ S, we denote by ω(M) the unit vector representing the light source direction at
the point M . Since we assume that the light source is located at the optical center, we
have

ω(M(x, y)) =
(−x,−y, f)√
x2 + y2 + f2

. (4.32)

In this model we have

R(n̂(x, y)) =
ω(M(x, y)) · n̂(x, y)

r2
. (4.33)

Remark 4.3 The dependence of ω on (x, y) is due to the fact that the light source is close
to the scene (indeed it coincides with the optical center). Moreover, the attenuation term
1/r2 is crucial and it is due to the fact that the power of the light source is finite and its
effect decreases moving away from it. This is very realistic if, for example, the light source
is a flash.

Substituting (4.31) and (4.32) in (4.33), we can write the main equation (IE) as

I(x, y)f2

u(x, y)

√
f2|∇u(x, y)|2 + (∇u(x, y) · (x, y))2

Q(x, y)2
+ u(x, y)2 = u(x, y)−2 , (x, y) ∈ Ω

(4.34)
where

Q(x, y) =

√
f2

x2 + y2 + f2
.
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By assumption H8, we know that the surface is completely visible, i.e. it is in front of the
optical center. As a consequence, u is strictly positive. This allow us to simplify equation
(4.34) by means of the transformation v = ln(u), obtaining

− e−2v(x,y) + J(x, y)
√
f2|∇v(x, y)|2 + (∇v(x, y) · (x, y))2 +Q(x, y)2 = 0 , (x, y) ∈ Ω

(4.35)
where

J(x, y) =
I(x, y)f2

Q(x, y)
.

In [78] the authors state that equation (4.35) admits a ”control formulation”, i.e. it can
be written as

− e−2v + sup
a∈B(0,1)

{−b(x, y, a) · ∇v − l(x, y, a)} = 0 , (x, y) ∈ Ω (4.36)

where

l(x, y, a) = −I(x, y)f2
√

1− |a|2 , b(x, y, a) = −J(x, y) tR(x, y) D(x, y) R(x, y) a

D(x, y) =

(
f 0

0
√
f2 + x2 + y2

)
, R(x, y) =

1

(x2 + y2)1/2

(
y −x
x y

)

and tR(x, y) is the transpose of the matrix R(x, y). Note that l(x, y, a) = 0 on ∂B(0, 1),
therefore in the numerical approximation we can not limit to consider the discretization
of ∂B(0, 1) but we have to discretize the unit ball entirely.
The following result has been proved in [78].

Theorem 4.4 Let Ω be bounded and smooth. If I is differentiable and if there exist δ > 0
and M verifying I ≥ δ and |∇I| ≤ M , then equation (4.35) complemented with Dirichlet
boundary condition u = φ on ∂Ω has a unique viscosity solution.

This uniqueness result shows that, under certain assumptions, the PSFSr model is not
ill-posed.
As we mentioned in section dedicated to the PSFS∞ model, the idea of state constraints
provides a more convenient notion of boundary condition than Dirichlet’s or Neumann’s
since it does not require any data. In [78] it is shown that a generic Hamiltonian H(x, u, p)
verifies state constraints as soon as

∇pH(x, u,∇u(x)) · η(x) < 0 x ∈ ∂Ω (4.37)

where η(x) is the unit inward normal vector to ∂Ω at the point x.
Consider for simplicity the unidimensional case Ω = [−x0, x0]. It is easy to show that for
our Hamiltonian HPSFSr(x, v, v

′) defined as in the left-hand side of equation (4.35), the
request (4.37) corresponds to r′(−x0) < 0 and r′(x0) > 0.

Theorem 4.5 Under the assumptions of Theorem 4.4, equation (4.35) complemented with
stat constraints boundary condition on ∂Ω has a unique viscosity solution.
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4.3.2 Numerical approximation

We present a semi-Lagrangian discretization for equation (4.36). The approximation
scheme is much simpler than that presented in [78] and it has a built-in up-wind correction.
By standard arguments, we get

− vh(x, y) + min
a∈B(0,1)

{vh((x, y) + hb(x, y, a)) + hl(x, y, a)}+ he−2vh(x,y) = 0 , (x, y) ∈ Ω

(4.38)
We want to solve equation (4.38) following the fixed point ideas of the previous chapters.
Note that, unlike the standard control problems, once we compute the control a∗ where
the minimum is attained we need some extra work to compute vh(x, y). In fact, let us
define

c := vh((x, y) + hb(x, y, a∗)) + hl(x, y, a∗)

and t := vh(x, y) for any (x, y) fixed. At every iteration we have to solve the equation

g(t) := −t+ c+ he−2t = 0.

We do that applying the Newton’s method as in [78] (note that g′(t) > 0 for all t ∈ R).

We start from any supersolution v
(0)
h of (4.38) and we compute its solution, iterating

the procedure until ‖v(n+1)
n − v

(n)
h ‖∞ < ε, where ε is a given tolerance. In [78] two

supersolutions are suggested as initial guess v(0):

v(0) = −1

2
ln(δf2) , δ = min I(x, y) and v(0) = −1

2
ln(I(x, y)f2).

We choose the time step h = h(x, y) in such a way |h(x, y)b(x, y, a∗)| ≤ ∆x and we
discretize the unit ball B(0, 1) in (#directions×#circles+ 1) points (see Fig. 4.19).

3435
6467 89

:;

circles

directions

Figure 4.19: discretization of the unit ball B(0, 1)

4.3.3 Numerical experiments

In this section we present two numerical experiments which show how promising and
robust is the PSFSr model.
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Test 1: flat surface
In this test we chose ε = 10−4, ∆x = 0.03, f = 1, 51×51 pixels and 8×2+1 controls. We
impose state constraints on the boundary of the square. Convergence was attained after
66 iterations. The L∞ error is 0.016. In Fig. 4.20 we show the initial photograph and
the computed surface. In Fig. 4.21 we show the error function and the estimated optimal
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Figure 4.20: photograph (left) and reconstructed surface (right)

vector field. It is interesting to note that the optimal vector field points to the center of
the square which is the first point to reach convergence in the fixed point procedure. In
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Figure 4.21: optimal vectorfield (left) and error function (right)

Table 4.4 and 4.5 we show the behavior of the L∞ error with respect to the choice of

16× 2 + 1 32× 2 + 1 8× 8 + 1

128× 128 0.013 0.013 0.0081

Table 4.4: behavior of the L∞ error with respect to the choice of controls

controls and of ∆x. We can see that the error reduces particularly if #circles grows.

Test 2: pyramid upside down
In the second test we consider a pyramid upside down with the vertex standing on a flat
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16× 4 + 1

64× 64 0.00479

128× 128 0.00384

256× 256 0.00344

Table 4.5: behavior of the L∞ error with respect to the choice of ∆x

background. We use a 128 × 128 pixels initial image and we chose f = 1/4. We impose
Dirichlet boundary condition on the boundary of the pyramid (so any computation is done
on the background). The initial image and the reconstructed surface are shown in Fig.
4.22. As in the previous case, we obtain good result. Consider that MATLAB connects
all points of the surface despite there is a hole in the domain of the reconstructed surface
as in Fig. 4.10.
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Figure 4.22: photograph (left) and reconstructed surface (right)

4.4 Shape from Shading: a well-posed problem?

In this section we investigate the well-posedness of both PSFS∞ and PSFSr models. The
question is: does the concave/convex ambiguity still exist or it disappears? We will see by
means of some numerical tests that in the PSFS∞ model the concave/convex ambiguity
still exists, although it is slightly modified by the perspective deformation. With regard to
PSFSr model, the matter is more delicate. Theorems 4.4 and 4.5 assure that the problem
is well-posed under suitable assumption, but we will be able to prove the existence of two
different surfaces S1 and S2 which are associated to the same brightness function I and
the same boundary condition on ∂Ω. The existence of such surfaces was first suggested
by J.-D. Durou.
Note that the example we will give does not contradict Theorem 4.4 nor Theorem 4.5 since
one of the two surfaces is not differentiable for all x ∈ Ω so that its brightness function
I is not defined everywhere in Ω. On the other hand, we stress that the brightness
function of the surface we construct is differentiable a.e. in Ω and it can be extended to
a differentiable function in all Ω. Therefore, we believe that our example strongly limits
the well-posedness of the problem declared in [78] and this is true in particular if we are
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interested in applications to real problems.

We start showing two interesting numerical tests in which we compare the PSFS∞ and the
PSFSr models. We consider a ridge tent upside down and its photograph (see Fig. 4.23).
In Fig. 4.24 we show the result obtained by the PSFS∞ algorithm imposing Dirichlet
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Figure 4.23: initial surface (left) and its photograph (right)

boundary condition on the silhouette of the tent. As we can see, the reconstruction fails
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Figure 4.24: reconstructed surface with Dirichlet boundary condition. Interpolated (left)
and not interpolated (right)

since the algorithm tries to compute the maximal solution instead of the correct solution.
However, the shape of the domain (distorted in the photograph) is correctly straightened.
Note that in Fig. 4.24-left MATLAB connects all points of the surface despite there is a
hole in the domain of the reconstructed surface as in Fig. 4.10. In Fig. 4.24-right the
same surface is plotted by a slighlty different point of view without interpolations.

In Fig. 4.25 we show the result obtained by the PSFSr algorithm imposing state constraints
boundary condition on the boundary of the square (i.e. the background). In this case the
reconstruction is definitively better than the previous one, considering that any boundary
data was needed. On the other hand, we observe that the hole in the domain due to the
regions in full shade is not reconstructed properly. In fact, the surfaces connecting the
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Figure 4.25: photograph (left) and reconstructed surface with state constraints boundary
condition, 159 iter., 101× 101 pixels, f = 1, ∆x = 0.015, 16× 2 + 1 controls (right)

tent and the background are really computed and they are not due to the MATLAB’s
interpolation.

We now come back to the existence of two different surfaces S1 and S2 which are associate
to the same brightness function I in the PSFSr model. In order to do this, we need first to
reformulate the problem in spherical coordinates (ρ, θ, φ) defined as usual (see Fig. 4.26),
fixing the origin at the optical center. Given a brightness function I(θ, φ) we are looking

<=
M

S

y

z

O

ρ

xφ

θ

Figure 4.26: spherical coordinates

for a surface S in the form ρ = ρ(θ, φ) such that

ω(θ, φ) · n̂(θ, φ)
ρ(θ, φ)2

= I(θ, φ). (4.39)

A generic point M on the surface S has coordinates

M =




ρ sin θ cosφ
ρ sin θ sinφ
ρ cos θ




with respect to the axis (x, y, z). We now introduce a new orthonormal system of
coordinates (uρ, uθ, uφ) defined by (see Fig. 4.27)
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Figure 4.27: the new orthonormal system of coordinates (uρ, uθ, uφ)

uρ :=
M(ρ, θ, φ)

ρ
=




sin θ cosφ
sin θ sinφ

cos θ


 , uθ :=

∂θuρ
|∂θuρ|

=




cos θ cosφ
cos θ sinφ
− sin θ




and

uφ :=
∂φuρ
|∂φuρ|

=



− sinφ
cosφ
0


 .

The new system (uρ, uθ, uφ) is ”mobile” and depends on the pointM ∈ S. The coordinates
of M in the new system are (ρ, 0, 0)(uρ,uθ,uφ).
The two vectors ∂θM and ∂φM are a basis in the plane orthogonal to the radial direction
at the point M =M(ρ(θ, φ), θ, φ).
Since M = ρuρ we have

∂θM = ρθuρ + ρuθ and ∂φM = ρφuρ + ρuφ sin θ

and then

∂θM = (ρθ, ρ, 0)(uρ,uθ,uφ) and ∂φM = (ρφ, 0, ρ sin θ)(uρ,uθ ,uφ).

Then, we can write the coordinates of the normal vector in the new system as

n̂(θ, φ) = − ∂θM × ∂φM
|∂θM × ∂φM |

=
(ρ2 sin θ,−ρρθ sin θ,−ρρφ)(uρ,uθ,uφ)
(ρ4 sin2 θ + ρ2ρ2θ sin

2 θ + ρ2ρ2φ)
1/2

so we have

ω(θ, φ) · n̂(θ, φ) = uρ · n̂ = (1, 0, 0)(uρ,uθ,uφ) · n̂(uρ,uθ,uφ) =
ρ2 sin θ

(ρ4 sin2 θ + ρ2ρ2θ sin
2 θ + ρ2ρ2φ)

1/2
.

In conclusion, equation (4.39) can be written as

I(θ, φ) =
sin θ

(ρ4 sin2 θ + ρ2ρ2θ sin
2 θ + ρ2ρ2φ)

1/2
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or, in a equivalent form,

ρ2

(
ρ2 + ρ2θ +

ρ2φ

sin2 θ

)
=

1

I2
. (4.40)

Equation (4.40) is the Image Irradiance Equation for the PSFSr problem in spherical
coordinates.

We now come back to our purpose. We choose as first surface S1 the surface ρ(θ, φ) ≡ 1,
where (θ, φ) ∈ [−θ, θ] × [−φ, φ] for some θ, φ < π/2 (see Fig. 4.28) which is associated

@A

f

O

z

x,y

S1

M

n̂

Figure 4.28: the surface S1

to the brightness function IS1(θ, φ) ≡ 1. Then, we look for a second surface S2 which is
associated to the same brightness function as S1 and it is of the form ρ = ρ(θ, φ) = ρ(θ).
Equation (4.40) is simplified to the following ordinary differential equation

ρ2(ρ2 + ρ2θ) = 1 (4.41)

or, equivalently (if ρ ≤ 1),

ρθ = g(ρ) , where g(ρ) := −
√

1− ρ4
ρ

(4.42)

It should be noted that g is not Lipschitz continuous if ρ = 1. In fact, if we complement
equation (4.42) whith the initial condition ρ(θ0) = 1 for some θ0 we obtain the family of
solutions

ρ(θ; θ0) =
√

cos(2(θ − θ0)) , θ ∈
[
−π
4
+ θ0,

π

4
+ θ0

]

which correspond to a family of surfaces {Sθ0} associated to the same brightness function
I ≡ 1 (see Fig. 4.29).
Note that, although we constructed a family of differentiable surfaces with the same
brightness function, they are still distinguishable by the PSFSr model by means of the
boundary condition (state constraints or Dirichlet). On the other hand, it is possible to
construct a a.e. differentiable surface S2 joining together two surfaces as in Fig. 4.30
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Figure 4.29: the surface S1 (ρ ≡ 1) and some Sθ0 ’s (left). The surfaces S1 and Sθ0=0

(right, after a rotation)
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Figure 4.30: how to construct two surfaces with the same brightness function and same
boundary condition

and such that S1 and S2 verify the same Dirichlet condition at the boundary. Moreover,
although the brightness function of S2 is defined only a.e., it can be extended to the value
1 where it is not defined obtaining a differentiable brightness function in all Ω.

Finally, we tried to confirm our theoretical results by means of some numerical tests. First
of all, we noted that if we solve the equation in a square, choosing I ≡ 1 and imposing
suitable Dirichlet boundary condition we obtain the surface S1, i.e. the hemisphere. In
order to force the algorithm to compute the surface S2 we need to fix the solution in some
internal node. If we fix the height of the surface on the vertical line x = 0 the algorithm
converges to the surface showed in Fig. 4.31-left. It is a credible approximation of the
surface S2. Fig. 4.31-right is obtained fixing the height of the surface in a single point (we
chose the center point (i, j) = (26, 26) on a 51× 51 pixels grid). In this case the algorithm
seems to join four functions in the set of the solutions of equation (4.40).
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Figure 4.31: how to construct two surfaces with the same brightness function and same
boundary condition



Chapter 5

Approximation of Pursuit-Evasion
games with state constraints

In this chapter we study the fully-discrete semi-Lagrangian scheme for Pursuit-Evasion
games with state constraints from the theoretical and numerical point of view.
In the first part we prove that the solution of the fully-discrete problem converges to the
time-discrete value function as the mesh size goes to zero. Then, we couple this result with
a recent result of Bardi et al. [11] to obtain, under suitable assumptions, the convergence
to the solution v of the continuous problem when the time and space steps go to zero.

Afterwards, we analyze the constrained Tag-Chase game in which two boys run one
after the other in a bounded convex domain with the same velocity. In this case the value
function is discontinuous and most of the theoretical results we know for Tag-Chase game
does not hold. We prove that the time of capture is finite if the capture occurs when the
Pursuer enter in a small ball centered at the Evader’s position.

In order to introduce the numerical tests, we give some hints for the implementation of
the algorithm. First, we briefly recall a simple and useful technique to make interpolation
in high dimensional spaces giving a precise error estimate. We will apply this technique
in the last part of the chapter to the numerical solution of the Hamilton-Jacobi-Isaacs
equation for games in R

4.
Later on, we explain how it is possible to reduce the size of the problem taking advantage
of symmetries in the case the Tag-Chase game is played in a square.

In the last section of the chapter we present a number of numerical tests for constrained
Tag-Chase game. In some cases, we discover a bizarre behavior of the approximate optimal
trajectories. Note that there are very few numerical results on constrained differential
games. We cite the considerable and pioneering work of Alziary de Roquefort [3] where
a large number of numerical tests are presented although they can not be considered a
definitive study due to the very small power of the employed computer. In Bardi et al.
[10] there are some interesting tests in Ω ⊂ R

2 with state constraints and discontinuous
value function. In [6] the effect of the boundary conditions for the free problem in R

4 is
studied. Finally, we mention the paper of Pesch et al. [75] where the optimal trajectories
are computed by means of neural networks (without solving Isaacs equation). Some other
interesting results on optimal trajectories are in Breakwell [17], where no computers are
used.
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5.1 Convergence of the fully-discrete numerical scheme

In this section we present some results related to the approximation of Pursuit-Evasion
games with state constraints. The main result is that the solution of the fully-discrete
problem converges to the time-discrete value function as the mesh size goes to zero. The
proof joins a number of techniques already presented in some papers. We mainly follow the
ideas in Falcone [48] which presents a convergence result for the minimum time problem
without state constraints. We generalize those ideas to games and we adapt all the notions
involved to the state constrained case following [18].
Note that in [10] it is proved the convergence of the fully-discrete solution to the solution
of the continuous problem in the free case, but this result can not be directly generalized
to the constrained case. In [18] the convergence result is proved in the constrained case,
but it strictly relies on the fact that the time-discrete value function is continuous so we
can not apply the same ideas to Pursuit-Evasion games.
It should be noted that most of our results can be probably adapted to deal with
generalized differential games. To do this, we can borrow some ideas introduced in [66]
with regards to the definition of admissible controls which are not restricted to Pursuit-
Evasion games.
Finally, we couple our result with a recent result of Bardi et al. [11] (see also [66, 59]) to
obtain, under suitable assumptions, the convergence to the solution v of the continuous
problem when the time and space steps go to zero.

We now formulate the time-discrete and fully-discrete version of Pursuit-Evasion games
with state constraints. In order to do this we will adapt to the constrained case the work
done in section 1.5.2 for the free case (see also section 1.4.2 for the formulation of the
continuous problem with state constraints). For numerical purpose we suppose hereafter
that T ⊂ Ω.
We will consider for simplicity a discrete version of the dynamics based on the Euler
scheme, namely {

yn+1 = yn + hf(yn, an, bn)
y0 = x

where yn = (yPn , y
E
n ), x = (xP , xE) and f(yn, a, b) = (fP (y

P
n , a), fE(y

E
n , b)). The first

player has to keep the system in Ω1 ⊂ R
n and the second player in Ω2 ⊂ R

n. The game
is set in Ω ⊂ R

2n where Ω := Ω1 × Ω2. Following the continuous case, let us define the
discrete version of the admissible controls verifying the state constraints

Ah
x :=

{
{an}n∈N : an ∈ A and yPn ∈ Ω1 , for all n

}
, x ∈ Ω

and

Bhx :=
{
{bn}n∈N : bn ∈ B and yEn ∈ Ω2 , for all n

}
, x ∈ Ω.

Then we define

Ah(x) :=
{
a ∈ A : xP + hfP (xP , a) ∈ Ω1

}
, x ∈ Ω

and

Bh(x) :=
{
b ∈ B : xE + hfE(xE , b) ∈ Ω2

}
, x ∈ Ω.
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Clearly,
{an}n∈N ∈ Ah

x ⇔ an ∈ Ah(yn) , for all n ≥ 1

{bn}n∈N ∈ Bhx ⇔ bn ∈ Bh(yn) , for all n ≥ 1.

Hereafter we will assume that

There is h0 > 0 such that Ah(x) 6= ∅ and Bh(x) 6= ∅ for all (h, x) ∈ (0, h0]× Ω. (5.1)

Definition 5.1 A strategy for the first player is a map αx : Bhx → Ah
x; it is

nonanticipating if αx ∈ Γhx, where

Γhx := {αx : Bhx → Ah
x : bn = b̃n for all n ≤ n′ implies αx[{bk}]n = αx[{b̃k}]n for all n ≤ n′}.

We define nh as in Section 1.5.2 then we define the time-discrete value function Th as

Th(x) := inf
αx∈Γhx

sup
{bn}∈Bhx

hnh(x, αx[{bn}], {bn})

and its Kružkov transform

vh(x) := 1− e−Th(x) , x ∈ Ω. (5.2)

The proof of the Discrete Dynamic Programming Principle in Section 1.5.2 can be easily
adapted to the constrained case noting that

{a′m}, {a′′m} ∈ Ah
x ⇒ {ãm} := {a′0, a′1, . . . , a′n, a′′0, a′′1, . . .} ∈ Ah

x for all n ∈ N

and similarly for Bhx .
Therefore, we can conclude that vh is the unique bounded solution of

{
vh(x) = max

b∈Bh(x)
min

a∈Ah(x)
{βvh(x+ hf(x, a, b))}+ 1− β x ∈ Ω\T

vh(x) = 0 x ∈ T
(HJIh−Ω)

where β = e−h. In order to achieve the fully-discrete equation we build a regular
triangulation of Ω as in Sections 1.5.1-1.5.2 denoting by X the set of its nodes xi,
i = 1, . . . , N and by S the set of simplices Sj , j = 1, . . . , L. V (S) will denote the set
of the vertices of a simplex S and the space discretization step will be denoted by k where
k := maxj{diam(Sj)}.
The fully-discrete approximation scheme is




vkh(xi) = max
b∈Bh(xi)

min
a∈Ah(xi)

{
βvkh(xi + hf(xi, a, b))

}
+ 1− β xi ∈ (Ω\T ) ∩X

vkh(xi) = 0 xi ∈ T ∩X

vkh(x) =
∑

j λj(x)v
k
h(xj) , 0 ≤ λj(x) ≤ 1 ,

∑
j λj(x) = 1 x ∈ Ω

(HJIkh−Ω)
As in the unconstrained problem, the choice of linear interpolation is not an obligation
and it was made for straightforwardness reasons. We denote by W k the set

W k :=
{
w ∈ C(Ω) : ∇w(x) = constant for all x ∈ Sj , j = 1, . . . , L

}
.
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Theorem 5.2 Equation (HJIkh−Ω) has a unique solution vkh ∈W k such that
vkh : Ω→ [0, 1].

Proof . The proof follows by the same arguments already presented in Theorem 1.36 and
its Corollary 1.37 by means of slightly modifications in order to take into account the state
constraints. ¥

Let us define

R0 := T
and

Rn :=

{
x ∈ Ω\

n−1⋃

j=0

Rj : for all bx ∈ Bh(x) there exists âx(bx) ∈ Ah(x) such that

x+ hf(x, âx(bx), bx) ∈ Rn−1

}
, n ≥ 1. (5.3)

See [48] for an analogous definition in the framework of the minimum time problem. Note
that the minimum time problem can be seen as a particular Pursuit-Evasion game when
the set B is a singleton, i.e. B = {b0}.

Remark 5.3 1. The shape of the sets {Rn , n ∈ N}, strictly depends on f and Ω;

2. Rn ∩Rm = ∅ for all n 6= m;

3. If Rp = ∅ for some p ∈ N, then Rq = ∅ for any q ≥ p;

4. The sets {Rn , n ∈ N} are the level sets of vh and vh jumps on the boundary of each
of them. Therefore, vh is discontinuous.

Hereafter we will always assume that

Ω =
∞⋃

j=0

Rj . (5.4)

Note that the assumption (5.4) can be seen as a sort of small time controllability
assumption and that it is not really restrictive since if it exists a point x ∈ Ω\⋃j Rj

this means that player P can not win the game from that point (he can not drive the
system to the target) and then vh(x) = 1.

We introduce two important assumptions on the triangulation. The first is the following
CFL-like condition (see Fig. 5.1).

x ∈ S ∩Rn ⇒ V (S) ⊂ Rn−1 ∪Rn ∪Rn+1 (5.5)

The second assumption is the ”consistency” of the triangulation (see Fig. 5.1).

Definition 5.4 We say that a triangulation is ”consistent” if, for any n ∈ N and any
x ∈ S ∩Rn it exists at least one vertex xi ∈ V (S) such that xi ∈ Rn.
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Figure 5.1: a simplex S crossing Rn, Rn−1 and Rn+1

Let vh and vkh denote respectively the solution of (HJIh−Ω) and (HJIkh−Ω). We now state
the main result of this chapter.

Theorem 5.5 Let Ω an open bounded set. Let f be continuous and (1.32) holds. Moreover
assume that (5.4), (5.5) hold true and let the triangulation be ”consistent”. Then, for n ≥ 1

a) vh(x) ≤ vh(y) , for any x ∈
n⋃
j=0
Rj , for any y ∈ Ω\

n⋃
j=0
Rj;

b) vh(x) = 1− e−nh , for any x ∈ Rn;

c) vkh(x) = 1− e−nh +O(k)
n∑
j=0

e−jh for any x ∈ Rn;

d) There exists a constant C > 0 such that |vh(x)−vkh(x)| ≤ Ck
1−e−h , for any x ∈ Rn.

Proof . a) By induction. For n = 0 the statement is true since

0 = vh(x) ≤ vh(y) for all x ∈ T , for all y ∈ Ω\T .

Let the statement be true up to n− 1. Suppose by contradiction that

there exists x ∈
n⋃

j=0

Rj and y ∈ Ω\
n⋃

j=0

Rj such that vh(y) < vh(x).

Therefore there exists a (discrete) trajectory that starts from Ω\
n⋃
j=0
Rj and reaches the

target in less then n time steps passing through Rn. The contradiction follows by the
definition of Rn.
b) By the definition of Rn, for any x ∈ Rn we can find n+1 points x(q), q = 0, . . . , n such
that x(0) = x and x(q) ∈ Rn−q. Introducing for simplicity the notations aq := ax(q) and
bq := bx(q) we can write the sequence of the points x(q) more explicitly as

x(q+1) = x(q) + hf(x(q), âq(b
∗
q), b

∗
q)
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where we use the ∗ to indicate the optimal choice. As a consequence, the state of the system
can reach the target in n steps and then vh(x) ≤ 1− e−nh. Suppose by contradiction that
vh(x) < 1− e−nh. As in b), this means that the state has reached the target starting at x
in less then n time steps but this is impossible since x ∈ Rn.
c) By construction we have vkh(xi) = 0 for all xi ∈ R0∩X. We now consider a generic point
x ∈ R0 and let S be the simplex containing x. Since the triangulation is ”consistent”, S
must have at least a vertex xi0 ∈ R0 and then vkh(x) = O(k) for all x ∈ R0 since vkh ∈W k.
This implies, for all xi ∈ R1 ∩X,

vkh(xi) = βvkh(xi + hf(xi, a
∗, b∗)) + 1− β = βO(k) + 1− β

since xi + hf(xi, a
∗, b∗) ∈ R0. We now consider a generic point x ∈ R1. By the same

arguments there exists at least one vertex xi1 ∈ R1 such that

vkh(x) = vkh(xi1) +O(k) = βO(k) + 1− β +O(k) = 1− β + (1 + β)O(k).

For any xi ∈ R2 ∩X

vkh(xi) = β(1− β + (1 + β)O(k)) + 1− β = 1− β2 + (β + β2)O(k)

and, for any x ∈ R2 it exists xi2 ∈ R2 such that

vkh(x) = vkh(xi2) +O(k) = 1− β2 + (1 + β + β2)O(k).

Continuing by recursion we obtain, for any x ∈ Rn

vkh(x) = 1− βn +O(k)

n∑

j=0

βj .

d) By b) and c) it exists a constant C1 (positive or negative) such that

|vh(x)− vkh(x)| = |C1|k
n∑

j=0

βj ≤ |C1|k
1− β =

|C1|k
1− e−h .

¥

Corollary 5.6 Let Ω an open bounded set. Let f be continuous and (1.32), (5.4) hold.
Moreover assume that

min
x,a,b

|f(x, a, b| ≥ f0 > 0 and 0 < k ≤ f0h. (5.6)

Then, for k → 0+, vkh converges to vh uniformly in Ω for any h > 0 fixed.

Proof . First note that condition (5.6) is a sufficient condition for (5.5) and for the
consistency of the triangulation. Therefore we can apply Theorem 5.5 and we easily
conclude. ¥

In order to obtain uniform convergence of vkh to the solution v of the continuous problem
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we couple our result with those in [11]. In Section 1.4.2 we proved that, under assumptions
(C1), (C2) and (C3), the solution v of (HJI-Ω) is continuous in Ω. Let us introduce the
following hypothesis on T (we always assume that T ⊂ Ω).

{
For each x ∈ ∂T there are r, θ > 0 and Ξ ∈ R

2n such that⋃
0<t<r

B(x′ + tΞ, tθ) ⊂ Ω\T for x′ ∈ B(x, r) ∩ Ω\T . (5.7)

We have the following

Theorem 5.7 Let Ω be an open bounded set. Let f be continuous and (1.32), (C1), (C2),
(C3), (5.1) and (5.7) hold. Let v be a solution of (HJI-Ω). Finally, assume that

fP (xP , A(xP )) and fE(xE , B(xE)) are convex sets. (5.8)

Then, for h→ 0+, vh converges to v uniformly in Ω.

Proof . Hypothesis (5.8) guarantees that the value function vh for the time-discrete
problem defined in (5.2) coincides with that used in [11]. Moreover, assumptions of
Theorem 1.25 are fulfilled so that v ∈ C(Ω). Then, the proof follows by Theorem 4.2
in [11]. ¥

Now we can state the final result

Corollary 5.8 Assume that there exists a constant C2 such that k ≤ C2h
1+α, α > 0.

Then, under the assumptions of Corollary 5.6 and of Theorem 5.7, vkh converges to v
uniformly in Ω for h→ 0+.

Proof . Since 1− e−h ≈ h for h→ 0+ we have

|vkh(x)− v(x)| ≤ |vkh(x)− vh(x)|+ |vh(x)− v(x)| ≤ C3h
α + ‖vh(x)− v(x)‖∞

for some constant C3. ¥

5.2 Tag-Chase game with state constraints

In section 1.4.1 we introduced the Tag-Chase game as a particular case of Pursuit-Evasion
games. We consider two boys P and E which run one after the other in the same 2-

dimensional domain, so that the game is set in Ω = Ω
2
1 ⊂ R

4 where Ω1 is an open bounded
set of R

2. We denote by (xP , xE) the coordinates of Ω where xP , xE ∈ Ω1. P and E can
run in every direction with velocity VP and VE respectively.
The case VP > VE was completely studied in [2, 3]. The value function T = − ln(1− v),
which represents the capture time, is continuous and bounded in all its domain of
definition. Moreover the convergence result we obtained in section 5.1 applies to this
case.
On the other hand, the most interesting case is certainly VP = VE , i.e. when any player
has an advantage over the other. In this case it is easily seen that the value function T is
discontinuous and then all theoretical results based on the continuity of the value function
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does not hold.

In this section we will answer to the question: if VP = VE , the capture time is finite?
If the Tag-Chase game is played without constraints on the state and both players play
optimally, it is immediately seen that the distance between P and E remains constant and
then capture never happens (the optimal strategy for E is move as fast as he can along
the line joining P and E in the opposite direction with respect to the position of P for
ever). On the contrary, if the state is constrained in a bounded domain, such a restriction
seems to play a key role against the Evader, as the following Proposition shows.

Proposition 5.9 Let the target be

T = {(xP , xE) ∈ R
2n : d(xP , xE) ≤ ε} , ε ≥ 0. (5.9)

and Ω1 an open bounded set. Then,

1. If VP > VE then the capture time tc = T (xP , xE) = − ln(1− v(xP , xE)) is finite and
bounded by

tc ≤
|xP − xE |
VP − VE

.

2. If VP = VE, ε 6= 0 and Ω1 is convex then the capture time tc is finite.

Proof .

1. This first part of the proof can be found in [2]. We fix a strategy for P and leave E
free to decide his optimal strategy. First, P reaches the starting point of E covering
the distance |xP − xE | and then he follows the E’s trace. The conclusion follows by
elementary computations.

2. The basic idea of the proof is the same of the previous case but we have to change
the strategy for the Pursuer in order to have a finite upper bound. P runs after E
always along the line joining P and E (P can do it by the convexity of Ω1) while
E chooses his own optimal trajectory as before. We can characterize the strategy
of E by a function θ(t) : [0,+∞)→ [0, 2π) which represents at every time the angle
between the velocity vector of E and the line joining P and E (see Fig. 5.2). Let us
denote by dPE(t) the distance between P and E at time t. We claim that, for any
fixed t,

θ(t) 6= 0⇒ d′PE(t) < 0 (5.10)

where ′ = d
dt . Due to the state constraints, θ(t) can not be equal to 0 for a time

interval longer then diag(Q) and after that must be different from 0 for a finite
time interval because E must change his trajectory. Therefore, if (5.10) holds then
dPE(t) → 0 for t → ∞ and then for any ε > 0 there exists a time t̄ such that
dPE(t̄) ≤ ε (the capture occurs).
In order to prove (5.10), let us define the two vectors E(t) and P (t) which are,
respectively, the position of P and E at time t and the vector r(t) := E(t) − P (t).
Obviously we have dPE(t) = |r(t)|. Without loss of generality, suppose that at time
t, P (t) is in the origin and E(t) lies on the x-axis and that VP = VE = 1 (see Fig.
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θ(t)

P

E

Figure 5.2: Trajectories of P and E in Proof of Proposition 5.9

x

y

1P P’ E

E’

θ(t)
P’

r’

Figure 5.3: Vectors P , P ′, E, E′ and r′ in Proof of Proposition 5.9

5.3). Then

P ′(t) = (1, 0) and
r(t)

|r(t)| = (1, 0).

Moreover, by construction we have

E′(t) = (cos θ(t), sin θ(t)) and r′(t) = E′(t)− P ′(t).

It follows that r′(t) = (cos θ(t)− 1, sin θ(t)) and

d′PE(t) =
r(t)

|r(t)| · r
′(t) = cos θ(t)− 1 (5.11)

so that (5.10) holds. ¥
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5.3 Some hints for the algorithm

In this section we give some hints for an efficient implementation of the algorithm for the
solution of differential games.

5.3.1 Interpolation in high dimension

In section 5.4 we will use the semi-Lagrangian scheme (HJIkh−Ω) to provide some numerical
results for real problems. In every case we will consider 2-player differential games in which
each player moves in a bounded domain Ωi ⊂ R

2, i = 1, 2, so that the game is set in Ω
where Ω = Ω1 × Ω2 ⊂ R

4. Note that no reduction of the dimension of the problem seems
to be possible due to the state constraints (see also section 5.3.2 below and [75, 3]).
It is important to note that the SL scheme requires that at every iteration and at every node
the value vkh(xi+hf(xi, a, b)) is computed and this computation needs an interpolation of
the values of vkh at the nodes. In order to overcome the difficulties coming from the high
number of nodes we have to implement a fast method for making these interpolations. In
[26] is extensively analyzed a fast and efficient interpolation method in high dimension
suitable to our purposes. We recall briefly this method giving a precise error estimate.

Consider a point x = (x1, . . . , xn) ∈ R
n and the cell of the grid which contains it (see

Fig. 5.4 for an example in 3D). Suppose that a function f is known in the 2n vertexes of
the cell and we want to compute the value q(x) by a linear interpolation. The basic idea
is to project the point x onto lower and lower dimensional subspaces until dimension 1 is
reached. More precisely, choose a dimension (in Fig. 5.4 we chose x1) and project the point
x in that dimension on both sides of the cell finding the points P 1

1 and P 1
2 . Then, choose

a direction different from the first one (we chose x2) and project the points P 1
1 and P 1

2 on
the sides of the cell finding the points P 2

1 , P
2
2 , P

2
3 and P 2

4 . Iterate the projection procedure
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Figure 5.4: linear interpolation in 3D
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2n+1− 2 times in the same way until all vertexes of the cell are reached. At this stage the
tree structure in Fig. 5.5 is computed from top to bottom. Now evaluate by unidimensional
linear interpolations the values of q at the points P j

i , i = 1, . . . , 2n , j = 1, . . . , n in the
reverse order with respect to that they was found (from bottom to top, see Fig. 5.6). This
procedure leads to an approximate value of f(x) obtained by 2n− 1 unidimensional linear
interpolations.
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Figure 5.5: The tree structure for linear interpolation.
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Figure 5.6: The tree for linear interpolation.

It is interesting to give a precise error estimates of this first order interpolation method.

Theorem 5.10 Let Qn := [a1, b1]× . . .× [an, bn] ⊂ R
n and x = (x1, . . . , xn).

Assume f ∈ C2(Qn;R) and let q(x), x ∈ Qn be the approximate value of f(x) obtained by
the n-dimensional linear interpolation described above.
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Then, the error E(x) := f(x)− q(x) is bounded by

|E(x)| ≤
n∑

i=1

∆2
i

8
Mi , for all x ∈ Qn

where Mi = max
x∈Qn

|∂2f(x)
∂x2i

| and ∆i = bi − ai.

Proof . We proceed by induction.
If n = 1, by the basic theory of interpolation we know that for all x ∈ [a1, b1] there exists
ξx ∈ [a1, b1] such that

|E(x)| =
∣∣∣f(x)−

(
b1 − x
b1 − a1

f(a1) +
x− a1
b1 − a1

f(b1)

) ∣∣∣ = 1

2
|x− a1||x− b1||f ′′(ξx)|

and then

|E(x)| ≤ (b1 − a1)2
8

M1.

If n = 2 we have

|f(a1, x2)− q(a1, x2)| ≤
(b2 − a2)2

8
M2 ∀x2 ∈ [a2, b2]

and

|f(b1, x2)− q(b1, x2)| ≤
(b2 − a2)2

8
M2 ∀x2 ∈ [a2, b2].

Then

|E| = |f(x1, x2)− q(x1, x2)| =∣∣∣∣f(x1, x2)−
(
b1 − x1
b1 − a1

q(a1, x2) +
x1 − a1
b1 − a1

q(b1, x2)

)∣∣∣∣ =

∣∣∣∣f(x1, x2)−
(
b1 − x1
b1 − a1

f(a1, x2) +
x1 − a1
b1 − a1

f(b1, x2)

)
+

(
b1 − x1
b1 − a1

f(a1, x2) +
x1 − a1
b1 − a1

f(b1, x2)

)
−

(
b1 − x1
b1 − a1

q(a1, x2) +
x1 − a1
b1 − a1

q(b1, x2)

) ∣∣∣∣ ≤

(b1 − a1)2
8

M1 +
b1 − x1
b1 − a1

|f(a1, x2)− q(a1, x2)|+
x1 − a1
b1 − a1

|f(b1, x2)− q(b1, x2)| ≤

(b1 − a1)2
8

M1 +
(b2 − a2)2

8
M2.
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In dimension n we have by the same arguments and by the induction hypothesis

|E| = |f(x1, . . . , xn)− q(x1, . . . , xn)| =

∣∣∣∣f(x1, . . . , xn)−
(
b1 − x1
b1 − a1

q(a1, x2, . . . , xn) +
x1 − a1
b1 − a1

q(b1, x2, . . . , xn)

)∣∣∣∣ ≤

(b1 − a1)2
8

M1 +
b1 − x1
b1 − a1

|f(a1, x2, . . . , xn)− q(a1, x2, . . . , xn)|+

x1 − a1
b1 − a1

|f(b1, x2, . . . , xn)− q(b1, x2, . . . , xn)| ≤

(b1 − a1)2
8

M1 +
n∑

i=2

(bi − ai)2
8

Mi.

¥

5.3.2 Reducing the size of the problem

Since the problem has an high computational cost, reducing the size of the problem is a
priority. Due to the state constraints, it seems not possible to use reduced coordinates
or a similar approach (see also [75, 3]). In fact, using reduced coordinates we loose every
information about the real positions of the two players, so that we can not detect when
they touch the boundary of the domain (and then change the dynamics consequently). We
tried to introduce a third fictitious coordinate in addition to those of reduced coordinates
(Section 1.4.1) in order to detect when players touch the boundary (we are not really
interested to their position at every time) but also this approach failed. In conclusion, we
made the problem manageable by means of the high dimensional interpolation introduced
in Section 5.3.1 and taking advantage of some symmetries of the problem.

Unidimensional Tag-Chase game

Although it seems not possible to describe the game in a reduced space due to the state
constraints, we can simplify the computation taking into account the symmetries of the
problem. In the unidimensional Tag-Chase game we can compute the solution in just half
grid and recover the entire solution in the n× n grid at the end of computation. We will
see that we can reduce the size of the the two-dimensional Tag-Chase game problem from
n4 to n4/4. We first explain this technique for the unidimensional Tag-Chase game. Each
player can move along a line in the interval [−x0, x0]2, therefore the game is set in the
square [−x0, x0]2.
In Fig. 5.7 we show the level sets of the solution T = − log(1 − v) in the case VP = 2,
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Figure 5.7: level sets of the solution T = − log(1− v) in the case VP = 2, VE = 1

VE = 1, x0 = 2. It is easy to see that

v(xP , xE) = v(−xP ,−xE) for all xP , xE ∈ [−x0, x0]

so that we can recover the entire solution either from the subsets
QNW = {(xP , xE) : xP ≤ xE} and QW = {(xP , xE) : xP ≤ 0}. This corresponds to the
fact that it is sufficient to compute the solution for all the initial positions of P and E
in which P is on the left of E or P is in the left side of the domain [−x0, x0] (see Fig.
5.8). There is an important difference between the two approaches. In fact the target

MNMO PNPQNQ RNRSNS TNTUP PE E

Figure 5.8: Two initial positions which correspond to the same value for v

T = {(xP , xE) : xP = xE} is entirely contained in QNW but not in QW . Since the target
divides the domain Ω = [−x0, x0]2 in two parts and no characteristics can pass from one
part to the other, all the optimal trajectories starting from QNW remains in QNW . This
is clearly not true for QW . As a consequence, if we compute the solution only in QW this
will be not correct because not all the usable part of the target is visible from the domain.
Unfortunately the domain QNW has not a correspondence in the two-dimensional Tag-
Chase game in which the target T = {(xP , yP , xE , yE) : xP = xE , yP = yE} does not
divide the entire space Ω = ([−x0, x0] × [−x0, x0])2 in two parts. In fact in this case
the co-dimension of the target is strictly greater than 1. On the contrary, we will see in
the next session that the domain QW has a natural generalization in the two-dimensional
case.
For this reason it is preferable to localize the computation only in QW . In order to
do this we adopt the following idea. First of all we choose n even. Then we compute
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the approximation of v at the node (i, j), for i = 1, . . . , n/2, j = 1, . . . , n via the
numerical scheme (HJIkh−Ω). After every iteration we copy the line (i = n/2, j = 1 : n)
in (i = n/2 + 1, j = n : 1) as a sort of ”periodic boundary condition” for QW . In this
way the information coming from the south-western part of the target can substitute the
missing information needed by the north-western part of the domain.
When the algorithm reached the convergence we can easily recover the solution on all over
the domain Ω.

Two-dimensional Tag-Chase game

As we did in the unidimensional case, we want to use the symmetries of the problem to
avoid useless computation.
We assume that each player can move in a square so that the game is set in a four-
dimensional hypercube. In this case we have more than one symmetry. In fact it easy to
check that the following three inequalities hold (see Fig. 5.9)
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Figure 5.9: Four initial positions which correspond to the same value for v

v(xP , yP , xE , yE) = v(−xP ,−yP ,−xE ,−yE) , for all (xP , yP , xE , yE) ∈ Ω (5.12)

v(xP , yP , xE , yE) = v(−xP , yP ,−xE , yE) (5.13)

v(xP , yP , xE , yE) = v(xP ,−yP , xE ,−yE). (5.14)

We note that once we take into account the symmetry (5.12) we took into account
automatically the symmetry in (5.13).
The following nested for’s take into account only the symmetry (5.14) and they allow to
compute correctly the whole 4D matrix containing the grid nodes.
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for i=1:n

for j=1:n/2

for j=1:n

for j=1:n

v(i,j,k,l)=SLscheme(...);

v(i,n-j+1,k,n-l+1)=v(i,j,k,l);

Now we are ready to make use of symmetry (5.12) by means of the technique
introduce for the unidimensional Tag-Chase game. We compute just half matrix
corresponding to the indexes i = 1, . . . , n/2 and after every iteration we copy the submatrix
(i = n/2, j = 1 : n, k = 1 : n, l = 1 : n) in (i = n/2 + 1, j = n : 1, k = n : 1, l = n : 1)
as boundary condition.
At the end of computation we easily recover the solution in the whole domain.

Remark 5.11 In order to reduce the computational effort we also tried to adapt the fast
search of the minimum we developed in Section 3.2.1. Unfortunately this seems to not
be convenient in the case of games. In fact, in the 1-player case we have four cases
corresponding to four orthants and every case is very simple to be solved while in the
2-player case we have sixteen cases each of which is divided in other subcases.

Remark 5.12 We ran a Fast Sweeping version of the one-dimensional Tag-Chase game.
We noticed that no improvements about the number of iterations is achieved. This is
probably due to the presence of state constraints so that the information first propagates
from the target and then it comes back after hitting the boundary.

5.4 Numerical experiments

In this section we solve equation (HJI-Ω) by the semi-Lagrangian numerical scheme
(HJIkh−Ω) we developed in previous sections. We only deal with two-dimensional
constrained Tag-Chase game (see Section 1.4.1 for the definition of this game). We consider
the case VP > VE as well as VP = VE and VP < VE . Note that these two last cases appear
for the first time in a numerical test. Although the equation related to the Tag-Chase
game (1.51) is simpler than that of a generic game, we will use the scheme for a generic
dynamics f(x, a, b) (without splitting max and min operators) due to Remark 1.41.
The code is written in C++ and its parallel version has been obtained by means of OpenMP
directives. The algorithm ran on a PC equipped with a processor Intel Pentium dual core
2 × 2.80 GHz, 1 GB RAM and on an IBM system p5 575 equipped with 8 processors
Power5 at 1.9 GHz and 32 GB RAM located at CASPUR1.

Notations and choice of parameters

We denote by n the number of nodes in each dimension. This number is clearly associated
to the space step ∆x (or k).
We denote by nc the number of admissible directions/controls for each player i.e. we

1Consorzio interuniversitario per le Applicazioni di Supercalcolo per Università e Ricerca,
www.caspur.it.
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discretize the unit ball B(0, 1) with nc points. We restrict the discretization to the
boundary ∂B(0, 1) and in some cases we add the central point (in this case we denote
the number of directions by n−c +1 where n−c = nc − 1).
We always use a uniform structured grid with four-dimensional cells of volume ∆x4 and
we choose the (fictitious) time step h such that ‖hf(x, a, b)‖ ≤ ∆x for all x, a, b (so that
the interpolation is made in the neighboring cells of the considered point).
We introduce the following stopping criterion for the fixed point iterations (1.61),

‖V (n+1) − V (n)‖∞ ≤ ε , ε > 0.

We remark that the quality of the approximate solution depends on h, k and also (strictly)
on the ratio h/k (see [6]).
The real game is played in a square [−2, 2]2 so the problem is set in Ω = [−2, 2]4.
The target is 3 pixels thick.
Once we computed the approximate solution, we recover the optimal trajectories (see
Section 1.2.3). At this stage we have to choose the time step ∆t in order to discretize
the dynamical system by Euler scheme. It should be noted that this parameter can in
general different from the (fictitious) time step h chosen for the computation of the value
function and this is true also for the number of controls nc. Moreover, computing optimal
trajectory requires the evaluation of the argminmax which is done again choosing a value
for h, and this value can be in principle different from that used in first computation.
We denote by v(xP , yP , xE , yE) the approximate value function and by
T (xP , yP , xE , yE) = − ln(1− v(xP , yP , xE , yE)).

5.4.1 Case VP > VE

The case VP > VE is the classical one and it was already studied by Alziary de Roquefort
[3]. In this case the value function v is continuous and all theoretical results we presented
in this chapter hold true.

Test 1
We choose ε = 10−3, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence was reached in
85 iterations. The CPU time (IBM - 8 procs) was 17h 36m 16s, the wallclock time was
2h 47m 37s. Fig. 5.10 shows the value function T (0, 0, xE , yE) and its level sets (we fix
the Pursuer’s position at the origin). It is immediately seen that if the distance between
P and E is greater than VP − VE = 1 then the state constraints have a great influence on
the solution. Moreover it is clear that the presence of state constraints gives an advantage
to the Pursuer.
Fig. 5.11 shows four optimal trajectories corresponding to the starting points

{
P = (−1, 0)
E = (0, 0)

{
P = (−2,−2)
E = (1, 0.7)

{
P = (−1.8,−1.8)
E = (0.5,−1.6)

{
P = (−1.8,−1.8)
E = (0.5,−1.8)

We always denote by black crosses the Pursuer’s position and by red squares the Evader’s
position.

Test 2
The second test is just to compare the CPU time on the two architectures we have at our
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Figure 5.10: Test 1: value function T (0, 0, xE , yE) (left) and its level sets (right)
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Figure 5.11: optimal trajectories for Test 1. Black crosses: Pursuer. Red squares: Evader

disposition. It is interesting to test the new dual core processors in order to understand
how much they can be useful in parallel scientific computing. They are indeed conceived
mainly to deal with distributed computing or simply multitasking. The performances of
the parallel code are measured in terms of two well known parameters, the speed-up and
the efficiency. Let Tser and Tpar be the times corresponding respectively to the execution
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architecture wallclock time speed-up efficiency

IBM serial 26m 47s - -

IBM 2 procs 14m 19s 1.87 0.93

IBM 4 procs 8m 09s 3.29 0.82

IBM 8 procs 4m 09s 6.45 0.81

PC dual core, serial 1h 08m 44s - -

PC dual core, parallel 34m 51s 1.97 0.99

Table 5.1: CPU time for Test 2

of the serial and parallel algorithms over np processors. We define

speed-up :=
Tser
Tpar

and efficiency :=
speed-up

np
.

Note that an ideal parallel algorithm would have speed-up = np and efficiency = 1. Table
5.1 shows the wallclock time, the speed-up and the efficiency for the following choice of
parameters: ε = 10−5, VP = 2, VE = 1, n = 26, nc = 36 + 1.

Test 3
In this test the domain has a square hole in the center. The side of the square is 1.06. We
choose ε = 10−4, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence was reached in 109
iterations. The CPU time (IBM - 8 procs) was 1d 00h 34m 18s, the wallclock time was
3h 54m 30s. Fig. 5.12 shows the value function T (−1.5,−1.5, xE , yE).
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Figure 5.12: Test 3: value function T (−1.5,−1.5, xE , yE)

Fig. 5.13 shows two optimal trajectories corresponding to the starting points

{
P = (−1.9,−1.9)
E = (1.9, 1.9)

{
P = (−1.9, 0)
E = (1, 0)

It interesting to note that in both cases the Evader waits until the Pursuer decides if he
wants to skirt around the obstacle clockwise or counterclockwise. After that, the Evader
goes in the opposite direction. If both players touch the obstacle, they run around it until
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Figure 5.13: optimal trajectories for Test 3. Black crosses: Pursuer. Red squares: Evader

the capture occurs.

Test 4
In this test the domain has a circular hole in the center. The radius r of the circle is 7∆x.
We choose ε = 10−4, VP = 2, VE = 1, n = 50, nc = 48 + 1. Convergence was reached in
108 iterations. The CPU time (IBM - 8 procs) was 1d 17h 27m 43s, the wallclock time was
6h 39m 00s. Note that handling with a circular obstacle inside the domain of computation
is not easy as in the previous test where the boundary of the obstacle matches with the
lattice. We adopt the following procedure. First of all, we define the radius r of the circle
as a multiple of the space step ∆x. Then, at every node (P=(i, j), E=(k, l)), we compute
the distance dPO (resp., dEO) between P (resp., E) and the center of the domain. Let
us focus on P , E being treated in the same way. If r ≤ dPO < r +∆x then we say that
P in on the ”numerical boundary” of the circle. The exterior normal vector η(i, j) to the
(numerical) boundary of the circle is simply given by the coordinates of the node (i, j), so
that we can easily compute the scalar product η · a where a is the desired direction of P .
If the scalar product is negative, we label the direction a as not admissible.
Fig. 5.14 shows two optimal trajectories corresponding to the starting points

{
P = (−1.9,−1.9)
E = (1.9, 1.9)

{
P = (−0.6, 0)
E = (1, 0.4)

The behavior of the optimal trajectories is similar to the previous Test.

5.4.2 Case VP = VE

When VP = VE the value function v is discontinuous on ∂T . In this case no convergence
results are known, nevertheless the numerical scheme seems to work very well. We remind
that results in Section 5.2 guarantee that v < 1 (the capture always occurs). This is
confirmed by the following test.

Test 5
We choose ε = 10−3, VP = 1, VE = 1, n = 50, nc = 36. Convergence was reached in
66 iterations. Fig. 5.15 shows the value function T (0, 0, xE , yE) and its level sets. Fig.
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Figure 5.14: optimal trajectories for Test 4. Black crosses: Pursuer. Red squares: Evader
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Figure 5.15: Test 5: value function T (0, 0, xE , yE) (left) and its level sets (right)

5.16 shows the value function T (1.15, 1.15, xE , yE) and its level sets. Fig. 5.17 shows four
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Figure 5.16: Test 5: value function T (1.15, 1.15, xE , yE) (left) and its level sets (right)
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optimal trajectories corresponding to the starting points

{
P = (0, 1)
E = (0, 0)

{
P = (1, 1.5)
E = (−0.5, 0)

{
P = (1.3, 1.8)
E = (0, 0)

{
P = (−1.9,−1.9)
E = (−1.7,−1.9)
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Figure 5.17: optimal trajectories for Test 5

Test 6
In this test the domain has a circular hole in the center. The radius of the circle is 7∆x.
Since the domain is no more convex, we have no guarantee that the time of capture is
finite. Numerical results show that the value function v is equal to 1 in a large part of the
domain.
It is well known that it is not possible to recover the optimal trajectories whenever
v = 1 (T = ∞) since from that regions capture never happens. Indeed, if VP ≤ VE
the approximate solution shows a bizarre behavior. Even if v < 1, in some cases the
computed optimal trajectories tend to stable trajectories such that P never reaches E.
Although this is due to some numerical error, these trajectories are extremely realistic so
they give to us a guess about the optimal strategies of the players in the case E wins. In
this Test (and others below) we show this behavior.
We choose ε = 10−4, VP = 1, VE = 1, n = 50, nc = 48 + 1. Convergence was reached in
94 iterations. The CPU time (IBM - 8 procs) was 1d 12h 05m 22s. Fig. 5.18 shows one
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Figure 5.18: optimal trajectory for Test 6

optimal trajectory corresponding to the starting point

{
P = (−1.8, 0)
E = (1.2, 0)

In this example, the capture did not happen after 150 time steps. The asymptotic behavior
of the trajectory is stable since once the two players reached the internal circle, they run
around it forever. It should be noted that, at the beginning of the game, E leaves the
time goes by in order to touch the boundary of the circle exactly when P touches it.
This strange behavior urges us to invent some method to compute rigorously the
trajectories corresponding to the E’s win, in order to confirm our guess. Maybe we can do
it considering the time-dependent problem (so that we work in R

5 as Alziary de Roquefort
does [3]). This allows to choose a time-dependent velocity VE(t) such that it is very fast
for 0 ≤ t < t̄ (capture impossible) and very slow for t > t̄ (capture unavoidable). For such
a velocity we have v < 1 so we can compute optimal trajectories but, for 0 ≤ t < t̄, E will
attempt to maintain a trajectory such that capture does not happen.

5.4.3 Case VP < VE

If VP < VE the value function v is discontinuous on ∂T . Moreover, we have no guarantee
that the time of capture is finite. Numerical results show that the value function v is equal
to 1 in a large part of the domain.

Test 7
We choose ε = 10−3, VP = 1, VE = 1.25, n = 50, nc = 48 + 1. Convergence was reached
in 53 iterations. The CPU time (IBM - 8 procs) was 12h 43m 02s, the wallclock time was
2h 18h 06s.
Fig. 5.19 shows the value function T (−1,−1, xE , yE) and its level sets.
Fig. 5.20 shows two optimal trajectories corresponding to the starting points

{
P = (−1,−1)
E = (−1, 1)

{
P = (−1,−1)
E = (−0.5,−0.5)
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Figure 5.19: Test 7: value function T (−1,−1, xE , yE) (left) and its level sets (right)
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Figure 5.20: optimal trajectories for Test 7

Note that the Pursuer approaches the corner in which capture occurs along the diagonal
of the square in order to block off the Evader’s escape.

Test 8
We choose ε = 10−4, VP = 1, VE = 1.5, n = 50, nc = 36. Convergence was reached in 65
iterations. The CPU time (IBM - 8 procs) was 15h 48m 46s, the wallclock time was 2h
30m 19s.
Fig. 5.21 shows two optimal trajectories corresponding to the starting points

{
P = (0.5, 0.5)
E = (1.5, 1.5)

{
P = (0,−0.8)
E = (−0.3,−1.3)

In the example on the left, E makes believe he wants to be caught in the upper-left corner
but after a while he turns on the right towards the upper-right corner. In the example on
the right the capture did not happen after 2000 time steps (see Test 6) and the asymptotic
behavior of the trajectories is quite stable. Moreover, we note that the ratio between the
two radii of the circles are about 1.5 as the ratio between the velocities of the two players
(and then they complete a rotation in the same time). This result must be compared with
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Figure 5.21: optimal trajectories for Test 8
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Figure 5.22: optimal trajectory for Test 9

the following test in which the velocities are different but the ratio is again 1.5.

Test 9
We choose ε = 10−3, VP = 2, VE = 3, n = 50, nc = 48 + 1. Convergence was reached in
44 iterations. The CPU time (IBM - 8 procs) was 9h 26m 42s, the wallclock time was 1h
29m 37s. Fig. 5.22 shows the optimal trajectory corresponding to the starting point

{
P = (0,−0.8)
E = (−0.3,−1.3)

The behavior of the asymptotic trajectory are very similar to the previous one.
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[3] B. Alziary de Roquefort, Jeux différentiels et approximation numérique de fonctions
valeur, 2e partie: étude numérique, RAIRO Modél. Math. Anal. Numér., 25 (1991),
535-560.

[4] J. P. Aubin, Viability theory, Birkhäuser, 1992.
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Birkhäuser, 1999.

[25] E. Carlini, E. Cristiani, N. Forcadel, A non-monotone Fast Marching scheme for a
Hamilton-Jacobi equation modelling dislocation dynamics, in A. Bermúdez de Castro,
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[75] H. J. Pesch, I. Gabler, S. Miesbach, M. H. Breitner, Synthesis of optimal strategies
for differential games by neural networks, in G. J. Olsder (editor), ”New trends in
Dynamic Games and Applications”, Annals of the International Society of Dynamic
Games 3, 111-141, Birkhäuser, 1995.
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